

Appgate SDP
Monitoring the SDP system (using Grafana)

Type: Technical guide

Date: September 2022

Applies to: Appgate SDP v6.0.1 and newer

©2022 APPGATE

Table of Contents

INTRODUCTION 2

MONITORING SDP 2

MONITORING TOOLS 3

SNMP AND PROMETHEUS 4

SNMP 4
PROMETHEUS 4

MONITORING GOALS 5

REAL LIFE MONITORING 6

ENABLING PROMETHEUS 6
AVAILABLE METRICS 6
THE PROMETHEUS/GRAFANA SET-UP 7
GRAFANA DASHBOARDS 8

CONCLUSION 19

MORE INFORMATION 19

Introduction
This paper takes you through the features that come with an Appgate SDP system that are used for monitoring appliances.
From v6.0.1 onwards there is a rich set of metrics provided and this paper explains which ones matter most and the best
way to use them to monitor the wellbeing of your Collective.

It uses real-life examples from Prometheus and Grafana to explain how Appgate has implemented this on a test Collective
that is in use every day. The examples explored refer to Controllers, Gateways and Portals.

Monitoring SDP
Let us start by defining some goals for what we should be monitoring. We need to ensure that…….

• the access infrastructure is operating as intended.

• access related appliance functions are performing to the required specification.

• normal operation does not impinge on any physical limits.

These three goals should help inform us about which metrics matter, as each-and-every Collective will be slightly different
in the way it has been deployed.

©2022 APPGATE

Appgate has supported countless Customers with many different deployment models, and each time we are asked to help
with a problem, we ask the question; how could that have been anticipated/avoided? Often the answer lies in metrics - “if
only the customer had been monitoring xxx then that could have been avoided”. So, in this paper we hope to share some
real insights into some of the things that really matter.

Customers are unlikely to have a detailed understanding of the inner working of the Appgate SDP system, without this
insight the prospect of trying to find a metric that is worth monitoring is quite a daunting undertaking. The problem of
finding the right metric was exacerbated by the fact that in v5.5 and earlier the metrics were somewhat disorganized,
there were more metrics than were needed for day-to-day monitoring and even then, there were one or two useful
metrics missing. Many customers will therefore have pushed monitoring into the ‘done it’ pile (monitoring RAM and disk is
good enough) or the ‘too hard’ pile (don’t really know where to start).

Monitoring has been a current area of focus for Appgate and in v6.0.1 they have been reimagined to make them fit for
enterprise usage. In this paper, we hope to take the customer insight we have gathered, the knowledge of the inner
working of Appgate SDP and combine these with the new metrics which are now available; and present this for customers
in a way which will help move monitoring off the ‘too hard’ pile and on to the ‘must do’ pile – so please read on.

Monitoring tools
It is worth explaining what is available in Appgate SDP today. There is some health-check monitoring provided by the
Appliance Health Status display:

This provides some very basic information which only really serves the
requirement normal operation does not impinge on any physical limits. Even
then you should be aware that the values shown are just a snapshot in time –
so the memory may show 51% now, but what was it 1 second earlier? This one
small example of why time-based metrics provide much more insight.

The status column indicates if there is a problem and there is some additional
information when you click on an appliance. This just about touches on the
requirement functions are performing to the required specification, but in
reality, is only showing the tip of the iceberg - so should not be considered as
adequate for production.

Many organizations chose to ‘monitor’ the audit logs, and because they have
set some alerts, think they are monitoring the Appgate SDP system adequately.
Audit logs are just that – a trail of what has happened (in the past). Sure, you
can make assumptions that because logs are appearing then the appliance
must be awake and doing work; but we have seen examples such as a pair of
HA Controllers, both of which are streaming logs but only one of which is
performing any user sign-in operations!

The audit logs are designed to meet compliance requirements providing an accurate and complete record of all the access
actions performed by the Appgate SDP system. From these it would be quite possible to identify a user who is being given
access to a resource wrongly. Audit logs are designed to gather a great deal of data about one thing, they are not intended
to measure functionality, well-being, resource consumption.

SNMP and Prometheus are designed to gather a little bit of data about very many different things to help you understand
the state and trajectory of an appliance. It is important to implement one of these tools as well as monitoring the audit
logs as part of the roll-out of an Appgate SDP Collective. Having said that, you will find the audit logs do appear in SNMP
and Prometheus in the form of audit_event; these are not the audit logs themselves but counters of audit log events.

©2022 APPGATE

The proper way to monitor the Appgate SDP Collective – is by integrating with external monitoring tools such SNMP or
Prometheus. When you configure a new appliance, the Miscellaneous tab provides the option to configure an SNMP
server or a Prometheus exporter, either of which can be used to feed metrics to external systems which can then provide
detailed monitoring services.

The Appgate SDP system generates metrics for SNMP and Prometheus in a unified way internally. Effectively when a
metric is collected it is programmatically formatted for both types of output, so even though we will be focused on
Prometheus in this paper, there will (almost) always be an exactly matching metric available in SNMP.

SNMP and Prometheus

SNMP
Simple Network Management Protocol [SNMP] is an application layer protocol which is part of the Transmission Control
Protocol ⁄ Internet Protocol (TCP⁄IP) protocol suite originating in the 1980s. It was designed specifically to manage and
monitor network elements.

How SNMP works

The SNMP server in Appgate SDP exposes metrics in the form of variables organized in a management information
base [MIB], which describes the metrics relevant to the SDP system. These metrics can then be remotely queried by
monitoring applications. The MIB can be downloaded from the Settings>Utilities page in the admin UI.

Prometheus
Prometheus is an open-source project managed by the Cloud Native Computing Foundation (CNCF). It was designed to
collect metrics about your application and infrastructure.

How Prometheus works

A Prometheus library has been built into the Appgate SDP appliance. This exposes an HTTP endpoint from where
Prometheus can scrape metrics. These scraped metrics are then stored, and rules applied to aggregate or generate time
series from the data. Grafana is the default means of visualizing this data.

©2022 APPGATE

Monitoring Goals
Before we dive in, let’s take a moment to understand each of the three goals in the context of a deployed Appgate SDP
Collective.

Infrastructure is operating as intended

The Appgate SDP Collective can be a complex beast spread across many locations and networks. It can include multiple
redundant instances – which because of the core design principal can operate with a high degree of autonomy. A Site with
only three operational Gateways out of five will look fine until maybe you run out of available capacity!

Key here is to ensure that the whole system is operational in the way you expected. If you have multiple Controllers, are
they all active? If you have a primary and a backup system – are they both available? If you are exporting audit logs – are
they actually sending or just filling the disk?

It may not be possible to answer all your infrastructure questions from Appgate SDP metrics alone, but there is a
surprising amount you can do. For the rest you may need to gather additional information from other related systems to
get a complete picture of the infrastructure.

Functions are performing to the required specification

Functions refer to the 6 different functions that you can enable on an Appliance: Controller, Gateway, Connector, Portal,
LogForwarder and LogServer.

It is important to show some metrics that confirm the function is doing what is intended. If something is meant to be
forwarding logs – then how many is it forwarding? You might have designed for a maximum of 1000 log records per
minute – but what is the commissioned system actually doing?

As well as getting a sense of well-being from seeing the function doing its job, the metrics can inform us about how well
the job is being done. You might have 2 Controllers and see the Ax-H3 appliance can sign-in user in an average of 200mS,
whereas the reserve machine (which is a VM) takes 600mS for the same thing. This sort of (historical) information can be
very useful for planning capacity or making hardware investments.

Given most systems will be operating in a HA configuration then clear graphical metrics which show appliances are in good
balance with each other is another important consideration.

When thinking about a function’s ‘ability to perform’ think about things which might prevent this happening. DoS is an
obvious one to consider – which metrics that can be used to suggest a DoS attack is beginning on a specific appliance?

Operation does not impinge on any physical limits

As we said earlier, without a clear understanding of the inner working of the Appgate SDP system it can be hard to know
what to monitor. Many customers have opted for the obvious metrics they always use on all their systems – such as CPU,
RAM and Disk. It does no harm measuring this low hanging fruit, but the most probable result will be to reveal; either
design features such as the use of Java which allocates (a lot of) heap space but does not usually give it back because heap
re-sizing is expensive operation; or design faults such as a file which is not being cleaned up correctly consuming an
increasing amount of disk space.

Controllers for instance should not normally consume any significant RAM to perform their function. If it is, then there is
likely to be some backlog forming such as long running scripts. It can operate at near 100% CPU but will get quite unhappy
when it runs short of disk space!

Portal supports only a stated maximum number of users (Client sessions), so monitoring the number of active users is very
important; but measuring RAM might be misleading as the product is designed to work within the available RAM and will
always use a minimum of 25% of the RAM.

Do not forget about limits imposed by others. The system relies on things like DNS, The DNS servers or any firewalls
between the Appgate SDP appliances and the DNS server might have some sort of per second limit. Exceeding this might
result in requests being dropped and a user’s access being denied. So, monitoring DNS requests/sec might be very
relevant in some deployments.

©2022 APPGATE

Real life Monitoring
For everything that follows, we are looking at a real-life Collective with 25 appliances. A number of these appliances have
been set up to use the Prometheus exporter. From this we drive a Grafana dashboard designed to monitor the health of
the Collective.

Enabling Prometheus
This is as easy as checking the box, and then filling in the IP address of your Prometheus server as an ‘Allowed Sources’.
This restricts access to only these known IP addresses.

Available Metrics
The metrics available are the same as you can find in the SNMP MIP which we publish in Settings>Utilities. An SNMP MIB
entry might look like this:

apnImageSize OBJECT-TYPE

 SYNTAX CounterBasedGauge64

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION "The size of this appliance image partition in bytes"

 DEFVAL { 0 }

 ::= { sdpApn 3 }

The equivalent metric in Prometheus would look like this:

apn_image_size

The description field is carried across to Prometheus unchanged. You can usually browse the available metrics in
Prometheus (or Grafana) and the description will be shown so downloading the SNMP MIB is not required when using
Prometheus.

©2022 APPGATE

The Prometheus/Grafana set-up
In our case we have a simple set up which looks like this:

The way Prometheus works is it will scape all available metrics from the defined targets every 15 seconds. These are all
stored in a time-series database. The defined targets are set by a YAML file which the Prometheus server reads.

The individual entries in the YAML file look like this:

Previous versions of Appgate SDP (v5.5 and earlier) have a working but somewhat unstructured implementation of
Prometheus. The metrics themselves were hard to understand and did not use labels. In the above example you will see
we had to add an extra label – gateway on the Prometheus server to make the metrics easier to use once they hit
Grafana.

From version 6.0.1 There is a completely new set of metrics and labels are now included automatically.

There is now, for instance, a func label which includes a comma separated list of the functions enabled on each appliance.
This is very valuable when designing your panels in Grafana because they allow easy selection of data sources.

When doing say a Controller dashboard, the metrics can be filtered with a regular expression to get only the memory
metrics for Controllers. In this example the appliance’s audit logs for just Controllers.

Labels also simplify the display of data. Once you have filtered the timeseries using all but one of the labels then the
remaining vector will now be used in the panel automatically.

©2022 APPGATE

If in this example if we do not specify the type then a pie chart will display all the types broken down by number.

This is not a very useful metric in itself but is a good example of how the use of labels simplify the ability to configure
panels with minimal input.

Grafana dashboards
In this paper we explore 3 example dashboards – one
each for Controllers, Gateways and Portal. For each,
we describe the panel/metrics we have used. We will
go through the rational for their inclusion, the specific
panel type used and the metric(s) query we used.

You might want to use less, more or different panels
but hopefully, these examples provide sufficient ideas
for you to adapt them to meet your own needs.

Many of the metrics are counters (value always
increases) so we quite often have to derive increases
or rates in order to display meaningful data.

Consider the time intervals that are used for each
panel to make the information meaningful.

Also think about what you want to see from what you
are measuring. Metrics should be designed to either
show what matters now, or should be designed to
look very different over time (trends). An auto-scaled
graph might look the same every day as the scale
keeps adapting, masking the fact the values are
creeping up towards some physical limit!

©2022 APPGATE

Controller Health dashboard

Below are panel descriptions that relate to the SDP Controller example dashboard we have made available in GitHub.

This example dashboard covers all three Controllers deployed in the ‘Purple’ Collective. The exact panels you select for
your dashboard are likely to be very similar as a Controller’s function is quite universal.

Distribution of authorizations is important as it checks that all the Controllers
are performing their function. Having set up DNS round-robin the 3 Controllers
should be sharing the load fairly equally. The pie chart makes this very visible
but does not show the actual load the Controllers are under.

PIE CHART uses:

ctr_client_authorization

The same health status as you see in the admin UI is available in Prometheus, so why not include this as the first
element in the panel? These are triggered by very many different checks that are performed by either come from the
specific function selected for the appliance (upper line) or that come from the hosting appliance itself (lower line).

STAT uses:

apn_function_status {name="controller"}

apn_status

Logs being successfully exported benefits from the use of RELP which is a guaranteed delivery protocol. Logs are added
to the export queue and removed only when an ack is received back from the receiving appliance. This metric is there
to ensure a good implementation with working two-way communications, and that there is no bottleneck between the
appliance and the log destination.

Aditionally, this metric also shows that the appliances are working correctly (generating an expected amount of logs).

STAT uses:

apn_audit_logs {type="removed"}

Average CPU usage for most Controllers is unlikely to be an issue. Only when there is some form of unexpected event
might there be a temporary issue. An example could be if someone deleted the Policy for 100s of headless Clients.
They would all then be trying to sign in repeatedly - which would effectively look like a DoS attack on the Controllers.

GAUGE uses:

apn_cpu_usage_percent

©2022 APPGATE

Threads reflect the fact that the Controller uses Java and creates a thread for each task it is asked to perform. All
threads consume some resources such as RAM. Threads can get ‘stuck’ for instance while waiting for a reply from an
external call. The thread count should not be climbing forever!

Memory usage of the Controller should be pretty constant at they do not really consume very much memory while
doing its job unless the thread count is out of control.

TIME SERIES uses:

ctr_threads

apn_memory

Database size can grow to several GB these days as we have some quite long tables in newer versions (with larger
image sizes too). The sawtooth is the vacuum process PostgreSQL uses.

Disk usage is important for Controllers – especially when performing upgrades which can cause downtime when
something goes wrong.

This is more of a check for something that is behaving in an unexpected way as opposed to monitoring some trajectory
of a correctly performing system.

TIME SERIES uses:

ctr_database_size

BAR GAUGE uses:

apn_disk

©2022 APPGATE

These 3 panels are concerned with networking – including that the Controllers are able to accept user connections.

SPA UDP traffic flow errors is monitoring the arrival of the UDP packets from Clients/Appliances. Connections always
start by sending 2 different UDP SPA packets. Only one needs to arrive but for reliable operation we need to be sure
that both are getting though. Here we are looking for the difference between the two (there should always be the
same number). This quickly shows when one of the paths is blocked.

Ignored UDP packets received relate to invalid DTLS and DNS (non SPA) packets; Invalid TCP packets received relate to
invalid TLS (non SPA) packets; so here we are basically reporting the on non SDP traffic hitting port 443 (& 53).

These might for instance indicate a DoS attack. This is more relevant on Controllers where they are likely to have a
public DNS record. We need to look for an increase in the metric reported to give us a value per time. This could also
be done for IPv6.

STATE TIMELINE uses:

abs(increase(spa_dtls_authorized) - increase(spa_dns_authorized)

TIME SERIES uses:

increase(apn_spa_packets {type="ignored"})

increase(apn_spa_packets {proto="tcp", type="invalid"}

Average sign-in time measures one of the primary functions of a Controller which is to authenticate and authorize
users/devices when they connect to the Appgate SDP Collective. The key metric here is how long sign-in it takes – you
don’t want users hanging around for many seconds because of some system misconfiguration! This will quickly expose
slow external calls or scripts that might be taking longer than you expect.

This metric uses metrics which don’t suffer from user induced delays such as when performing some sort of MFA input.

TIME SERIES uses:

ctr_client_authentication {measure="average_time"} + ctr_client_authorization {measure="average_time"}

This is effectively the time to generate the claims token + the time to generate the entitlement token. We have set a
warning area in the chart at 1second.

©2022 APPGATE

Failed Authentications per hour is a measure of user behavior. Remember because of SPA this is unlikely to be BOTs
guessing their way in and is more likely to be users with real problems.

Authorizations per hour is the best representation of the full work being done by the Controllers as it is measuring the
output of the process.

The TIME SERIES uses:

rate(ctr_client_authentication {measure="error"}

rate(ctr_client_authorization {measure="success"}[$__interval])*60*60

IPv4 pool size shows you that in fact the pool is split (not shared) – in this case the default pool is split 3 ways. When
one or more Controllers are down (during an upgrade) the availability of new IP addresses is massively reduced! It is
important to measure each Controller separately.

IPv4 pool usage monitors one of the things that can stop a Controller performing its job (which should always get
priority when it comes to monitoring). When a user signs-in they are assigned an IP address from the pool that the
Controllers use. If there are none available, then the user won’t be allowed to sign-in.

TABLE uses:

ctr_ip_pool {usage="total"}

GAUGE uses:

(ctr_ip_pool{usage="current"}+ignoring (usage) ctr_ip_pool{usage="reserved"})/ignoring (usage)

ctr_ip_pool{usage="total"}*100

©2022 APPGATE

License utilization is the other thing that can stop a Controller performing its job is running out of Licenses. The ones
that matter (in real time) are the user and portal licenses. For completeness we also include the other types of Licenses
that can be installed in the Collective.

GAUGE uses:

ctr_license {measure="used"} / ignoring (measure) ctr_license {measure="entitled"} *100

You only need to query a single Controller because the license pool is shared across all Controllers.

©2022 APPGATE

Gateway Health Dashboard

You might find some of the panel descriptions missing for Gateway. We have omitted any panels/descriptions that are
shared with the Controller unless it is important to emphasize specific differences.

This example dashboard covers two of the Sites in a Collective: Heathrow and Gothenburg. The exact panels you select for
your dashboard should reflect the Site’s use case. A default gateway Site might need to reflect the fact that they have
potentially very high network traffic throughputs while using an almost static set of access rules.

Each Site (Heathrow and Gothenburg) has two Gateways (Purple 80/81 and Purple 1/2).

TEXT uses:

<h2><center>Heathrow</center> and

<h2><center>Gothenburg</center>

Gateways session split reflects the current load balance
between the Gateways in the Site. This is dictated by the
weighting factor that was set when the Gateway was
configured. If the (two) weightings are the same, then you would expect so see a 50/50 split in a steady state system.
Clearly if there is a networking problem this would quickly show up. But the split can also change for valid reasons –
maybe you recently upgraded the Collective in which most users will now be on the first Gateway that was upgraded.

PIE CHART uses:

gw_vpn_sessions

NIC throughputs are another key metric to monitor as Gateways are primarily about passing user/device traffic.
Appliances/instances can have very different NIC specifications so it might be good to set a warning band at their limit.
Reaching the limit is not a major problem as the available bandwidth will be shared across all the users/devices. The
specific interfaces are not referenced as this is just an indicator of any potential problem. The dashboard will show this
detail if required.

TIME SERIES uses:

avg_over_time(apn_network_interface_rx_speed)/1000000

avg_over_time(apn_network_interface_tx_speed)/1000000

©2022 APPGATE

Firewall rules active is fun to see but can have a serious purpose as well. It is fun because Appgate SDP generates
firewall rules as users sign-in, so at night there can be very few and during the day, there may be 10M or more active
rules! The serious side is more to do with checking that this is the behavior you expect to see from a security
perspective – should there be new rules appearing at 3am?

This metric also tracks the behavior of failover events when for instance system upgrades are performed.

TIME SERIES uses:

avg_over_time(gw_vpn_rules [5m])

URL access is used when you choose the HTTP up action type for an
Entitlement (the firewall rules engine is not used). A web proxy is used to
filter the traffic based on the URL.

Active (connections) provides an equivalent metric to the one above for this specific type of action.

Req/m metric is useful as the number of https requests that can be handled is resource constrained.

TIME SERIES uses:

avg_over_time(url_access_active_connections [5m])

©2022 APPGATE

Event queue size is recording the peak value of the current event queue in a rolling time window.

Appgate Gateways are very different from traditional firewalls. Everything is managed on
a per-user basis and access rules can be quite dynamic. So, there can be lots of individual
events to handle in a system.

A finite number of events can be processed in parallel (depending on the RAM available
in the appliance). Beyond this number, events are queued for processing later. This
metric is quite important for ensuring the queue size does not grow uncontrollably in say
a Gateway failover; a situation gas been seen a number of times. The queue recovery time can be seen from this metric
also. CPU and/or RAM can then be adjusted to suit the required recovery time.

Of the nine types of events, re-evaluations are possibly the most common of these events and are mostly done at 5, 15
and 60 minute intervals.

TIME SERIES uses:

gw_event_queue_period_peak

Time to sign-in and time to re-evaluate Conditions are typical of the types of events in the system at any one time. It is
therefore very important to monitor the event execution time. If times grow longer, eventually the system will run out
of time to clear the event queue at which point things will start going awry.

The type label allows you to select the types of events which are of interest to you. Ones that rely on outside influences
(via scripts) are likely to be more critical than the others, so here we show two: re-evaluate Conditions and sign-in.

Do remember to monitor all the Gateways. In this case all 4 are combined into the one heatmap; where you can see
there is a high frequency of events taking between 3 and 4 seconds!

HEATMAP uses:

gw_session_event_timing {measure="average",type="login"} and

gw_session_event_timing {measure="average",type="reEvaluateConditions"}

©2022 APPGATE

Java heap relates to the fact that the session daemon is written in Java which has its own strange ways of working. It
grabs chunks of memory based on what it is doing and only gives them back occasionally when it performs garbage
collection.

Even though two Java metrics are provided - It is probably unnecessary to monitor either java thread count (if the
events are being monitored adequately) or Java heap (as it is maximum size is based on a proportion of what RAM is
available). However there maybe some value in knowing roughly what Java is using when making a final judgement as
to the amount of RAM to configure in your Gateways.

TIME SERIES uses:

gw_sessiond_heap {measure="used"}

VPN daemon memory usage is unlike the session daemon usage. It will just use more and more based on what the
Gateway is being asked to do. The amount per user will only be in the KB range; even though this appears small, when
multiplied by several thousand users can amount to many GB.

Again, it is probably unnecessary to monitor this if memory usage (overall) is measured. However there may be some
value in knowing roughly what is being used when making a final judgement as to the amount of RAM to configure in
your Gateways.

TIME SERIES uses:

avg_over_time(gw_vpn_memory_usage [5m])

Memory usage in Gateways can have very dynamic use of memory (unlike Controllers). Because we do not use disk
caching then users may be dropped when a Gateway runs out of memory. So, this is a key metric to monitor. If you
have complex Conditions and use scripting then this can be a very important metric as these use VPN and session
daemon resources which can get quite memory hungry.

In Linux there are several different ideas for how to report memory usage, a conservative metric has been used (it will
show the worst case).

GAUGEs use:

apn_memory {measure="percent"}

©2022 APPGATE

DNS Forwarder activity per hour and DNS resolver activity per
hour use just two of the metrics available in respect of name
resolving. Here we include the one from the DNS forwarder
and the one from the DNS resolver. These are shown more as
an example than the right metric for you to use. If, for
example, you are a heavy AWS user then displaying AWS
name resolver metrics will probably have more value than
the DNS ones.

In both these metrics we are just looking at DNS look-ups and
the related results. This gives us two important things; firstly,
the rate of lookups (DNS may be rate limited), and secondly,
the results - which would immediately show if there was
some sort of configuration issue.

BAR GAUGEs use:

rate(gw_dns_forwarder_query

{proto="ipv4",type="a"} [1h])*3600

rate(gw_dns_resolver_query {type="a"} [1h])*3600

Portal Health Dashboard

You might find some of the panel descriptions missing for Portal. We have omitted any panels/descriptions that are
shared with the Controller/Gateway unless it is important to emphasize specific differences.

This example dashboard covers a single Portal. The exact panels you select for your dashboard are likely to be very similar
as a Portal’s metrics are quite straight forward.

Running Client Instances in the Portal will be based on the
installed RAM. Make sure this is adequate for your user-base.

There are several type options you can
use. Here we are displaying running and
used.

STAT uses:

ptl_client{type="running"}

GAUGE uses (for the value):

ptl_client{type="used"}

and to set the full-scale value:

ptl_client{type="running"}

Top Domains metric is available because we run a DNS proxy
on the Portal. (This ensures that each users’ DNS traffic is
handled uniquely). It allows us to see which services users
are using through the Portal. This can allow the Entitlement
assignments to be optimized. Remember the Portal is not
SPA protected so limiting access rights should be a priority!

TABLE uses:

ptl_dns_proxy_domain

©2022 APPGATE

Hourly DNS Proxy activity is looking at DNS look-ups and
their related results. This gives us two important things;
firstly, the rate of lookups (DNS may be rate limited), and
secondly, the results - which would immediately show-up
any sort of configuration issue.

Separate gauges are included for type a and aaaa lookups.

For the bars we have added the different result types to
produce just two, one for good and one for bad.

There is also a {result="cache"} label which shows how many
of the successes came from the internal cache.

BAR GAUGEs use:

increase(ptl_dns_proxy_query {result="timedout"}

[1h]) + ignoring (result) increase

(ptl_dns_proxy_query {result="notfound"} [1h]) +

ignoring (result) increase (ptl_dns_proxy_query

{result="error"} [1h])

increase(ptl_dns_proxy_query {result="success"} [1h])

Conclusion
The information and examples we have shown are likely to cover the key metrics that should be monitored in most
Collectives. The approach we have taken is more important than the exact examples we used. It is important to monitor
your Appgate SDP system in the way that best suits your deployment. Measuring what it is doing is probably as important
than measuring what it is consuming.

The ability to judge if something is coping well or is on a bad trajectory should be easy to see and where appropriate
trigger alerts and take any corrective actions before any users are impacted. These types of systems can fail fast
(avalanche type failures) when things begin to go wrong so relying on metrics like RAM usage will give no advanced
warning and only serve to confirm that something has already gone badly wrong!

We have explained three real-life examples using Prometheus and Grafana and hope these will inspire you to do the same
for your own Collectives. To help you on your way we have added these three sdp-grafana-dashboards to our public
Github repository.

More information
Appgate delivers secure access solutions that thwart complex threats, reduce costs, boost operational efficiency and
secure the lives of the people that rely on them. Through a suite of network security and fraud protection solutions -
including the world’s leading Zero Trust Software-Defined Perimeter architecture.

Appgate is relied on by global enterprises seeking to protect their digital assets.

Start your secure access journey with confidence by visiting https://www.appgate.com/software-defined-perimeter

Check out the Appgate SDP admin Guide: https://sdphelp.appgate.com/adminguide/v6.0/monitoring-and-logs.html

	Introduction
	Monitoring SDP
	Monitoring tools
	SNMP and Prometheus
	SNMP
	How SNMP works

	Prometheus
	How Prometheus works

	Monitoring Goals
	Infrastructure is operating as intended
	Functions are performing to the required specification
	Operation does not impinge on any physical limits

	Real life Monitoring
	Enabling Prometheus
	Available Metrics
	The Prometheus/Grafana set-up
	Grafana dashboards
	Controller Health dashboard
	Gateway Health Dashboard

