
Appgate SDP – Automation & orchestration – scripting of access controls – page 0

Appgate SDP
Automation and orchestration –
scripting of access controls

Type: Technical guide
Date: November 2020
Applies to: Appgate SDP v5.3 and newer

Appgate SDP – Automation & orchestration – scripting of access controls – page 1

TABLE OF CONTENTS

Introduction .. 1
Access rights model used in Appgate SDP ... 2
Adding orchestration and automation .. 4

Device Claim Script (Controller) .. 5
User Claim Script .. 6
(Assignment) Criteria Script .. 8
Device Claim Script (Gateway) ... 10
Entitlement Scripts .. 11
Access Criteria Script .. 12
Resource Names ... 14

More information .. 15

INTRODUCTION

Like most other edge devices Appgate SDP can be configured with traditional static access rules.
These can still be (quite advanced) conditional rules, but at the end of the day they are static;
rules such as allow access on Thursdays. In an increasingly connected world where dev-ops is
becoming the norm a more dynamic model is needed for access rules; rules such as allow
access if the data centre temperature is over 20 degrees.
This paper takes you through the different points in the system where it is possible to use some
form of scripting to dynamically configure the Appgate SDP system.
It does not cover the ability of the Appgate SDP to be modified using REST API calls (from scripts
run by others). These makes it very easy for external systems to update the static (or dynamic)
configuration settings within the Appgate SDP system. This further enhances the dynamic nature
of the overall solution. For more information, please refer to the detailed API documentation.
By combining the scripting capabilities covered in this paper with the REST API support means it
is now quite possible to utilize Appgate SDP as a foundation from which you can build a fully
automated access control platform even encompassing the concept of ‘security as code’.

Appgate SDP – Automation & orchestration – scripting of access controls – page 2

ACCESS RIGHTS MODEL USED IN APPGATE SDP

Appgate SDP uses a token-based architecture to pass information from the Controller, via the
user’s device to the Gateway. Tokens contain all the information needed for authentication,
authorization and real-time access control.

• The user signs-in to the Client on their device.
• System, user and device claims are harvested.
• The Controller (the certificate authority) uses the claims to decide what Entitlements to

assign to the user and creates signed Entitlement tokens for each Site.
• The Entitlement tokens and claims token are sent from the Controller to the user’s device

and the Client forwards them to the Gateway(s).
• The Gateway uses the Entitlement token to configure the firewall rules (Actions) and

provide near real time access controls (Conditions) on a per-user basis.

Controller
When the first Controller in a new Collective is started, it establishes itself as the as the certificate
authority for signing tokens and certificates and for establishing mutual TLS connections. It
contains the configuration database but for the most part it is stateless.
The Controller is a REST based appliance which simply responds to any incoming requests.
For administrators it provides centralized administration over security Policies, assignment
criteria, user Entitlements/Conditions, administrator privileges, network configuration, logging,
monitoring, etc. The assignment criteria set for each Policy define who will be granted specific
(access) rights. The Controller can also be used to manually revoke tokens at any time.
Whenever Clients require a token creating or updating, they make REST calls over mTLS to the
Controllers – but otherwise remain disconnected. The Controller replies to the Client with
Entitlement tokens - one per Site.
Gateways make REST calls to Controllers to report on health, fetch token revocation lists, check
for any network changes, etc.

Client
The Client uses DNS round-robin to find an active Controller each time it requires tokens. After
(re-)authentication, the required tokens are issued with a pre-defined lifetime.
The Entitlement token includes a list of available Gateways with load balance weightings for each
Site. The Client will then use this information to establish a connection to one Gateway on each
Site where the rights defined in the Entitlement are granted. Once established, the Client will be
able to communicate with the protected network resource via the Gateway.

Gateway
The Gateway is the enforcement point, responsible for controlling user access to protected
network resources. After initial seeding, it registers with the Controller via a REST call over mTLS
and is then added to the list of available Gateways on the Site.
With every new Client connection, the Gateway will start a firewall service dedicated to that
session. The Gateway uses the Entitlement tokens from each Client to manage firewall rules and
uses the Claims token combined with other Conditions to provide real-time access control.
User interactions allow the Gateway to elevate user privilege levels on-demand.
Name resolvers automatically resolve any firewall rules based on real-time information from the
Cloud (Cloud API based DNS) or hypervisor environments.

Appgate SDP – Automation & orchestration – scripting of access controls – page 3

Claims Token
A claims token is provided by the Controller to the Client on successful user authentication. The
claims token is signed by the Controller and contains validated trusted claims related to the
identity (and context of the Client and device). Information in the claims token can be encrypted
thus protecting any sensitive claims that may have been returned in scripts.
The Client will keep the claims token in memory for as long as it needs but not save it to disk.
This allows the Client to connect to the appliances in the Collective without any further
authentication.
An example of the information included in a claims token might be username, AD group
membership, etc.

Entitlement Token
An Entitlement token contains a list of all the user's Entitlements for a specific Site as well a list of
the Gateways associated with that Site and the defined weighting of each Gateway.
The Entitlement token is created by the Controller following a request from the Client. Once it is
connected, the Client sends the relevant Entitlement token to the appropriate Gateway. An
example of the information included in an Entitlement token would be Site, list of Gateways,
access rights (Actions and Conditions).

Claims based access rights model
Before exploring how to add orchestration and automation to the Appgate SDP system it is worth
remembering that this is just an extension of the traditional static access rules capabilities of the
system. The system already uses claims in Boolean expressions to assign Policies and allow
Actions. By adding orchestration and automation we are enhancing the number/type of claims
available, extending how claims can be used within the system and allowing more complex
expressions to evaluate claims. Whether using the normal capabilities of Appgate SDP or
embarking on an orchestration and automation project, the same care needs to be taken when
designing access controls.
The claims used throughout fall into two categories:

• Trusted - typically collected from authoritative sources such as LDAP
• Un-trusted - typically collected from exposed environments such as the user’s device

The latter should therefore not be relied on for making critical security decisions; but could be
used for finessing access decisions such as removing an app on mobile devices which may not
work on small screens.
From a trust (and therefore security) point of view it can sometimes be better to think at the
overall system level and use a combination of things to achieve the desired outcome. If you
needed to rely on claims about connecting devices, then rather than just relying on a claim from a
device script it might be better to combine the use of and external database with a device claim
script and a user claims script, all working together. A device script could be used to collect a
secure random ID which was assigned to the connecting device as part of an enterprise build
process. This ID itself can't be trusted because it has come from the device. But this ID could now
be passed in a user claim script to an authoritative external device database. In the first instance
the ID has to match a record, confirming it as a legitimate device; and then the script could return
some trusted claims relating to that device ID.
Unlike some edge devices, Appgate SDP can be configured with quite advanced claims based
access rules but at the end of the day they are static - rules such as allow access on Thursdays.
In an increasingly connected world where dev-ops is becoming the norm a more dynamic model
is needed for access rules - rules such as allow access to a specific data center when the inside
temperature is over 20 degrees centigrade.

Appgate SDP – Automation & orchestration – scripting of access controls – page 4

ADDING ORCHESTRATION AND AUTOMATION

The Appgate SDP system has evolved to allow almost all parts of the access control process flow
to be made scriptable. This allows the system to interoperate with countless external systems
and network environments. Effectively the system can learn who might want access and what is
potentially available for them. It can then decide what Actions are allowed at the current time and
find the available live hosts.
Dynamic configuration offers many advantages over static configurations:

• The system configuration is always up to date (no stale firewall rules).
• The actual number of rules required is likely to be drastically reduced (making for

streamlined rule audits).
• A well configured dynamic access system requires very little day to day maintenance

(reducing the opportunity to make mistakes).
• The use of metadata to control the configuration allows specific user access decisions to

be informed by authoritative parties (outside of the networking and security teams).
• The access rules within the system can respond in near real time (such as when a threat

is detected).
• The system can automatically adapt to the environments in which it is deployed (such as

the use of autoscaling).
A somewhat complex example which would have to use several of these scripts might be:
allow support guys weekday only access to Azure systems exhibiting high CPU load tagged with
‘Dev’. They must have a correctly patched device and there must be a ‘Dev’ in the office (to
check any fixes).

The triangles show all the different points in a typical sign-in process flow where it is possible to
apply some sort of scripting. At most of these points the scripts can perform complex logic, string
manipulations or calculations but an important part of the capability offered is to allow limited calls
to be made to external systems.
Remember it is also possible for external systems to make calls to Appgate SDP to modify the
system configuration. The REST API functions allow you to create Entitlements, Policies, and
Conditions (among many other settings). This means it is even possible to have external systems
create some of the scripts which are then used to dynamically update the configuration settings
within the system!
The following sections of this document takes you through each of the points in the system
shown in the diagram above. It explains briefly what each script does and its usage. The system
requires you to set things up in a number of different places to allow a script to be used – so all
these steps are highlighted. Finally, a code example is provided for each.

Appgate SDP – Automation & orchestration – scripting of access controls – page 5

Device Claim Script (Controller)

After the user signs in, specified native executable device claim scripts are pushed to the user's
device. The Client runs these executables which should be specifically designed to harvest and
return additional claims (using stdout). The appropriate executables are automatically pushed to
the specified platform. Each OS must be able to support native execution of the file type pushed.

Why use?
Over 20 built-in claims and on-demand device claim commands are available. When the
specific information required is not available using the built-in commands, you may write and
upload native executable scripts. The supplemental device information provided by the script
will be saved as a claim by the Controller and can be used as basis for assignment decisions
in the (Assignment) Criteria Scripts within Policies.

Usage example:
Return the device’s IT asset number from some corporate device identifier.

Configure:
• Device Claim Scripts are uploaded in Scripts>Device Claim Scripts
• They are enabled by Identity Provider. To run a script, go to System>Identity

Providers>Configure On-demand Device Claims and select Run Device Script
from the Command drop down. Here you specify where (platform) the script should be
run. The output from the script will be mapped to the device claim specified.

• The on-demand Device Claims are then available at the bottom of the Assignment
Criteria drop downs in Operations>Policies and Scripts>Criteria Scripts.

Code example:
Checking MDM firewall is enabled:

@requires_authorization
def somefunc(param1='', param2=0):
 r'''A docstring'''
 if param1 > param2: # interesting
 print 'Gre\'ater'
 return (param2 - param1 + 1 + 0b10l) or None

class SomeClass:
 pass

>>> message = '''interpreter
... prompt'''

Appgate SDP – Automation & orchestration – scripting of access controls – page 6

User Claim Script

The user Claim script is designed to collect additional user centric claims. User claim scripts
execute AFTER user sign-in but BEFORE Policy assignment. The resultant claims generated by
the user claim script may be re-used elsewhere in the system; within the Controller the new user
claims can be used as assignment criteria within Policies. These new claims are also added to
the claims token so within the Gateway, they can be used as access criteria in Conditions and
even to define protected hosts in Entitlement scripts.
The JavaScript expression runs in a sandboxed JavaScript engine which supports external http
Get/Post/Put calls. There is no time-out, as such so user claim scripts should be built as
efficiently as possible as the user/device sign-in process will be waiting for this script to finish. If
the script takes too long, after 10 seconds the Client will fail-over to the next Controller and the
process will be repeated - possibly indefinitely!

Why use?
This type of script would typically be used to query external systems in order to collect
additional information about the user and/or their device. It should be used for making
external calls in lieu of doing this in the (assignment) criteria script. The user claim script will
be run just once whereas the assignment criteria script will be run once for every Policy.
This type of script can also help to reduce the load on your Gateways considerably. Claim
values (from the script) may be used straight from the claims token; rather than the Gateway
having to query the external system (again) for every new TCP stream initiated by every
user.

Usage example:
Returns a key value pair after checking user and/or device claims against an external
database. The device’s asset number could be used to check if the patching is up to date by
returning the last patch date.

Configure:

• User Claim Scripts are added in Scripts>User Claim Scripts
• They are enabled by Identity Provider. To run a script, go to System>Identity

Providers>User Claim Scripts. The output from the script must include a specific user
claim and its value.

• The results from the User Claim Scripts can be included by selecting User Claim Script
from the top section of the criteria drop downs in Operations>Policies,
Operations>Conditions and Scripts>Criteria Scripts.

• A JavaScript expression is required to evaluate the returned value as the system has no
way of knowing the type of value that has been returned. The new claim will appear in
the system as claims.user.agScripted.claim_name:claim_value

Appgate SDP – Automation & orchestration – scripting of access controls – page 7

Code example:
Returns a risk score for the user/device:

// Create HTTP body to send
var body = {
 username: claims.user.username,
 deviceId: claims.device.id, // generated by a device claim script
};var response = httpPost('https://posture.mycompany.com/appgate-posture', body);if
(!response) {
 console.log('Connection failed');
 return {};
}if (response.statusCode !== 200) {
 console.log('Posture check returned error: ' + response.data);
 return {};
}return { riskScore: response.data.score };

Appgate SDP – Automation & orchestration – scripting of access controls – page 8

(Assignment) Criteria Script

The Appgate SDP system evaluates claims using assignment criteria expressions to make Policy
assignment decisions. Normally Policy assignment criteria expressions can be configured within
the Policy itself using the assignment tool options and claims pick-list. In such cases there is no
requirement to write a separate script as the simplified UI will generate a JavaScript expression
for you.
When a custom script is needed, it may use existing user, device and system claims. This script
also executes within the native sandboxed JavaScript engine which supports external http
Get/Post/Put calls. This script should be as efficient as possible because after sign-in every
Policy will be checked (and will run the script) to determine if the related user rights apply.

Why use?
There are several reasons why you might want to use a criteria script (as opposed to just a
Boolean expression).

• The complexity of the Boolean expression required goes beyond what the builder can
support.

• You switched from custom logic is met to script returns true and made an edit.
• An external call is required to harvest claims from some other third-party system.
• The same criteria expression is to be re-used in several Policies.

Usage example:
Returns true if the user is in LDAP Group X AND the device is fully patched AND device is
on the office network.

Configure:
Either

• Enter the script directly in
Operations>Policy>Assignment using script
returns true.

Or

• In Scripts>Criteria Scripts under Assignment select script returns true and create
and save a re-usable script.

• In Operations>Policy under
Assignment by choosing Criteria
Script from the drop down select the
script from the list.

Appgate SDP – Automation & orchestration – scripting of access controls – page 9

Code example:
Typical multi-claim criteria script:

var result = false;
if/*ip*/(claims.system.isClientInNetwork('10.10.1.0/24'))/*end ip*/ { result = true; } else { return
false; }
if/*claims.user.groups*/(claims.user.groups && claims.user.groups.indexOf('ITAdmin') >=
0)/*end claims.user.groups*/ { result = true; } else { return false; }
if/*claims.device.os.family*/(claims.device.os && claims.device.os.family === "Windows")/*end
claims.device.os.family*/ { result = true; } else { return false; }
if/*claims.device.Symantec_chk*/(claims.device.Symantec_chk === true)/*end
claims.device.Symantec_chk*/ { result = true; } else { return false; }
if/*claims.device.isFirewallEnabled*/(claims.device.isFirewallEnabled === true)/*end
claims.device.isFirewallEnabled*/ { result = true; } else { return false; }
return result;

Appgate SDP – Automation & orchestration – scripting of access controls – page 10

Device Claim Script (Gateway)

Every 5 mins, the Client runs native executable scripts that have previously been pushed to the
device. Each OS must be able to support native execution of the file type pushed.
These should be specifically designed to harvest and return additional claims (using stdout). They
will typically check things which may have changed since the user signed in. Metrics which
change all the time (such as CPU usage) SHOULD BE AVOIDED because updated device
claims are sent to Gateway and the access criteria is re-evaluated every time a change is
detected, this will result in significant system and network overhead.

Why use?
Over 20 built-in claims and on-demand device claim commands are available. When the
specific information required is not available (using the built-in commands), you may write
and upload native executable scripts. The supplemental device information provided by the
script will be treated as a claim by the Gateways and can be used in a Condition’s access
criteria scripts to allow (or block) a specific Entitlement.

Usage example:
Return true/false value based on whether the AV process is installed, updated and running.

Configure:

• Device Claim Scripts are uploaded in Scripts>Device Claim Scripts
• They are enabled by Identity Provider. To run a script, go to System>Identity

Providers>Configure On-demand Device Claims and select Run Device Script
from the Command drop down. Here you specify where (platform) the script should be
run. The output from the script will be mapped to the device claim specified.

• The On-demand Device Claims are then available at the bottom of the Access Criteria
drop downs in Operations>Conditions.

Code example:
Checks the wifi signal strength on a macOS.

#!/bin/bash

x=$(/System/Library/PrivateFrameworks/Apple80211.framework/Versions/Current/Resources/
airport -I|grep agrCtlRSSI|awk '{print $2}')
if(($x > -60))
then
 result="strong"
elif(($x > -70))
then
 result="acceptable"
elif(($x <= -70))
then
 result="weak"
fi

echo $result

Appgate SDP – Automation & orchestration – scripting of access controls – page 11

Entitlement Scripts

When an Entitlement is defined, it comprises app shortcuts (shown in the Client app launcher)
and the related Actions (defining the firewall rules). It is possible to use Entitlement scripts to
define these elements. These scripts can utilize any existing user, device and system claims
including those provided by the Controller in the claims token. Again, it executes in a sandboxed
JavaScript engine with http Get/Post/Put calls allowed.
The 3 types are:

• App Shortcut – defines the name, description, url and Icon color for the app shortcut that
will be displayed in the Client.

• Host – defines a resolvable name or IP address. If resource names are returned, then
later the name resolver will resolve these to IP addresses.

• Port or Type – defines one or more port numbers or ICMP types.
Scripts may request information from other systems that require credentials (which will have to be
included in the JavaScript). Scripts used in Entitlements and Conditions are therefore passed in
the encrypted portion of the Entitlement token.

Why use?
Entitlements that contain scripts (based on user/device claims) are initially run when the user
connects to each Gateway. The script might be designed to create a resource name by
concatenating together a claim value (such as an AD attribute) with some static syntax or a
value returned from an external system. If the result was esx://vm:<VALUE> then this will
subsequently be resolved to IPs using the vSphere name resolver. This ability to resolve
different VMs based on some <VALUE> allows an Entitlement to effectively adapt at use-
time, which can dramatically reduce the number of Policies and Entitlements that need to be
configured in the system.

Usage example:
Returns a resolvable expression (aws://tag-value….) made by concatenating claims values
with the value returned from an external api call.

Configure:

• Entitlement Scripts are added in
Scripts>Entitlement Scripts and then selecting
between the three options:
Host - Port or Type - App Shortcuts

• Specify the scripts in Operations>Entitlement:
• under Client App Shortcuts - using Entitlement Scripts select the required

script from the dropdown
• under Actions enter the syntax script://script_name in either the protected hosts

(target) and/or ports fields.

Code example:
Returns a list of IP addresses.

return JSON.parse(httpGet("https://dev-ops.int.appgate.com/test-runners/executions-
ips").data);

Appgate SDP – Automation & orchestration – scripting of access controls – page 12

Access Criteria Script

The Gateways evaluate access criteria expressions included in Conditions to make access
decisions. If true, then the Actions are allowed; if false: a user interaction is initiated and sent to
the Client.
There is no requirement to write a script - expressions can be configured within the Condition
itself using the criteria tool options and claims pick-list. This will generate the resulting JavaScript
expression for you. However, when an access criteria script is used, it can combine existing user,
device and system claims with extra dynamic information and make complex access decisions in
near real-time. Again, it executes in a sandboxed JavaScript engine with http Get/Post/Put calls
allowed.
As noted previously, when writing a script, it should be as efficient as possible as every time a
user opens a new TCP stream the script will be run. Instead of using http calls to get static claims
(i.e. user group), consider using a user claim script as this will only be run once per sign-in and
the Controller will add any new claims to the claims token. This will reduce the latency caused by
the Gateways having to make frequent (unnecessary) external API calls.
Scripts may request information from other systems that require credentials (which will have to be
included in the JavaScript). Scripts used in Entitlements and Conditions are therefore passed in
the encrypted portion of the Entitlement token.

Why use:
Every entitlement must include a Condition which by default is set to always. The default
Condition can be replaced by more specific Conditions in order to be able to make
conditional access decisions.
There are several reasons why you might want to use an access criteria script (as opposed
to just a Boolean expression).

• The complexity of the Boolean expression required goes beyond what the builder can
support.

• You switched from custom logic is met to script returns true and made an edit.
• An external call is required to harvest claims from some other third-party system.

Usage example:
Allows the use of real-time user interactions - such as requesting MFA to access a specific
protected host because an intrusion detection system is at warning level 3.

Configure:
• Enter the script directly in Operations>Conditions>Access Criteria using script

returns true and save the Condition.
• In Operations>Entitlements>Condition Select the saved Condition from the drop

down.

Appgate SDP – Automation & orchestration – scripting of access controls – page 13

Code example:
Get devices by hostname then request the scan history of the device:

var log2Console = true; //Visible UI edit mode test panel
var log2Audit = false; //Visible in audit logs

function log(msg) {
 var prefix = "myScript_ref: ";
 msg = prefix + msg;

 if (log2Console)
 console.log(msg + "; ");
 if (log2Audit)
 auditLog(msg);
}
function GetDeviceId(){
 var claimId=null;
 var hostname = claims.device.os.hostname
 var requestDeviceId=skorpionUri+"?filter_hostname="+hostname+"&limit=1"

 var deviceIdResponse=httpGet(requestDeviceId,headers);
 if(!deviceIdResponse){
 log("No response from httpGet device id");
 }else{
 var deviceRecord = JSON.parse(deviceIdResponse.data);
 claimId = deviceRecord["id"];
 }
 return claimId;
}

function GetDeviceStatus(deviceId){
 var scanresult=null;
 var requestDeviceHealth=skorpionUri+"/"+claimId+"/scan_history?limit=1";
 var deviceHealthResponse=httpGet(requestDeviceHealth,headers);
 if(!deviceHealthResponse){
 log("No response from httpGet device health")
 }else{
 var healthRecord = JSON.parse(deviceHealthResponse.data);
 scanresult =healthRecord["result"];
 log("scan result found");
 log(scanresult);
 }
 return scanresult;
}

var deviceId = GetDeviceId();
//claims.device.SKID=deviceId;
if(!deviceId){
 log("No profile found")
}else{
 //deviceId = claims.device.SKID;
 SKscanresult = GetDeviceStatus(deviceId);
 claims.device.SKscanresult = SKscanresult;
 devicePassed = (SKscanresult == "pass")
}
return devicePassed;

Appgate SDP – Automation & orchestration – scripting of access controls – page 14

Resource Names

Instead of managing firewall rules directly, administrators control
access by defining Entitlements comprising Actions (to network
resources) and Conditions (access criteria). Within an Action, the
network resources can be defined by a number of means:

• IP addresses - need no further action
• Hostnames - sent to the configured DNS server to be

resolved.
• Resource names - comprise special syntax that can be

resolved using Cloud APIs.
Appgate SDP supports AWS, Azure, GCP and VSphere. Once configured correctly, the Gateway
will automatically adjust the allowed access rules in response to changing assets and IP
addresses within any virtualized environment. The name resolver re-checks the results every 60
seconds to see if they have changed. If so, then the Entitlement and access criteria scripts are re-
run and the firewall rules are updated accordingly. If a hostname is returned, then the Name
Resolver will then use DNS to resolve this. API calls are rate limited and cached to ensure the
respective host platforms do not block these queries at busy times.

Why use?
When resource names are used it becomes possible to automate the configuration within
Entitlements. This allows the network resources to be populated by external systems -
something which is much more suitable for today’s agile dev-ops world.
The Appgate SDP system makes API calls that return the actual instances currently active in
a specific hypervisor or Cloud environment. This allows the firewall rules to be populated in
near real-time and avoids any need to manually update Entitlements (firewall rules) every
time a new server instance is created or removed.

Usage example:
If the resource name aws://security-group:Example was used, the Gateway will query the
appropriate provider (in this case, AWS) to get the current IP addresses for all the network
resources in the security group "Example". The resolvers work recursively, so if this first
query does not return IP addresses (as might be the case when querying a Load Balancer)
then the process is repeated. Once it returns IPs, these will be used to create the required
firewall rules.
When a new host is started and tagged with "Example", it will automatically be added to the
results the next time the provider is queried for information.

Configure
• Within the hosting environment (eg. AWS), use tags/security groups/namespaces/etc to

identify the instances of servers, interfaces, load balancers, etc.
• Set permissions in or obtain credentials from the hosting environment that grants the

Appgate SDP API user the rights to use all relevant REST API calls.
• Set up the different types of name resolvers in System>Sites>Name Resolvers so that

they are ready to be used by the Gateway.
• Define the protected hosts using the special resource name syntax in

System>Entitlements>Actions.

Appgate SDP – Automation & orchestration – scripting of access controls – page 15

• You can test your name resolver syntax in System>Sites. There is a test button for each
site. The syntax for testing the resolver will be exactly the same as the syntax that you
configure your Actions.

Code example:
To get all instances in project ‘appgate-dev’ which are in the USA:

gcp://project=id:appgate-dev;instance='zone: "${ZONE_PROJECT_URL}us-*"'

MORE INFORMATION

This paper is focused on the overall scripting capabilities of the Appgate SDP system. It does not
explore the wider aspects of how to configure an Appgate SDP system. Many parts of this paper
have been integrated into the admin guide to better link these scripting and configuration aspects
together. The best starting point in the manual is the topic on Automation & orchestration.

There is also the Appgate GitHub site where there is more information about scripts, extensions
and customizations
Appgate delivers secure access solutions that thwart complex threats, reduce costs, boost
operational efficiency and secure the lives of the people that rely on them. Through a suite of
network security and fraud protection solutions - including the world’s leading Zero Trust
Software-Defined Perimeter architecture.
Appgate is relied on by global enterprises seeking to protect their digital assets. Start your secure
access journey with confidence by visiting https://www.appgate.com/software-defined-perimeter

