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1. Introduction 

This application note describes the design of a 3-phase 

Permanent Magnet Synchronous Motor (PMSM) vector 

control (Field Oriented Control - FOC) drive with 2-

shunt current sensing with and without position sensor.  

This design serves as an example of motor control 

design using NXP S32K3 automotive family with 

MCUs based on a 32-bit Arm® Cortex-M7® core with 

IEEE-754 compliant single precision floating point unit 

optimized for a full range of automotive applications. 

An innovative drivers set, Real-Time Drivers (RTD), 

are used to configure and control the MCU. It complies 

with Automotive-SPICE, ISO 26262, ISO 9001 and 

IATF 16949. Low-level drivers of RTD and S32 Design 

Studio Configuration Tools (S32CT) are used to 

demonstrate non-AUTOSAR approach.  

Following are the supported features: 

• 3-phase PMSM speed Field Oriented Control 

• Current sensing with two shunt resistors  

• Shaft position and speed estimated by sensorless 

algorithm or encoder position sensor  

• Application control user interface using 

FreeMASTER debugging tool 

• Motor Control Application Tuning (MCAT) tool 
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2. System concept 

The system is designed to drive a 3-phase PMSM. The application meets the following specifications: 

• Based on the S32K3x4-Q172 development board for general-purpose industrial and automotive 

applications. See [1]  for more information. 

• DEVKIT-MOTORGD containing GD3000 MOSFETs pre-driver with extensive set of functions 

and condition monitoring (see [9]  [10]  ) 

• Real-Time Drivers (RTD) and S32CT (non-AUTOSAR) used as S32K44 device configuration 

and control tool being a part of the S32 Design Studio for S32 Platform (S32DS) a NXP’s 

complimentary integrated development environment (IDE) (see PMSM field oriented control)  

• Control technique incorporating: 

o Field Oriented Control of 3-phase PM synchronous motor without position sensor 

o Closed-loop speed control with action period of 1ms 

o Closed-loop current control with action period of 100µs  

o Bi-directional rotation 

o Flux and torque independent control 

o Field weakening control extending speed range of the PMSM beyond the base speed  

o Position and speed is estimated by Extended Back Electromotive Force (eBEMF) 

observer or obtained by Encoder sensor  

o Open-loop start up with two stage alignment 

o Reconstruction of three-phase motor currents from two shunt resistors 

o FOC state variables sampled with 100 μs period 

• Automotive Math and Motor Control Library (AMMCLIB) - FOC algorithm built on blocks of 

precompiled SW library (see [5]  ) 

• FreeMASTER software control interface (motor start/stop, speed setup) (see [4]  ) 

• FreeMASTER software monitor (monitoring/visualization of application variables) 

• FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters, 

current loop, sensorless parameters, speed loop) (see [13]  ) 

• FreeMASTER software MCAT graphical control page (required speed, actual motor speed, 

start/stop status, DC-Bus voltage level, motor current and system status) 

• FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and 

motor current) 

• FreeMASTER software high-speed recorder (reconstructed motor currents, vector control and 

algorithm quantities) 

• DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection 
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3. PMSM field oriented control 

3.1. Fundamental principle of PMSM FOC 

High-performance motor control is characterized by smooth rotation over the entire speed range of the 

motor, full torque control at zero speed, and fast acceleration/deceleration. To achieve such control, 

Field Oriented Control is used for PM synchronous motors.  

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a 

high control dynamic. Analogous to standard DC machines, AC machines develop maximal torque 

when the armature current vector is perpendicular to the flux linkage vector. Thus, if only the 

fundamental harmonic of stator magnetomotive force is considered, the torque Te developed by an AC 

machine, in vector notation, is given by the following equation: 

𝑇𝑒 = 
3

2
⋅ 𝑝𝑝 ⋅ 𝜓𝑠

̅̅ ̅ × 𝑖𝑠̅ 

Equation 1 

Where pp is the number of motor pole-pairs, is is stator current vector and ψs represents vector of the 

stator flux. Constant 3/2 indicates a non-power invariant transformation form.  

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator 

current vector is satisfied by the mechanical commutator. As there is no such mechanical commutator in 

AC Permanent Magnet Synchronous Machines (PMSM), the functionality of the commutator has to be 

substituted electrically by enhanced current control. This reveals that stator current vector should be 

oriented in such a way that the component necessary for magnetizing of the machine (flux component) 

shall be isolated from the torque producing component. 

This can be accomplished by decomposing the current vector into two components projected in the 

reference frame, often called the dq frame that rotates synchronously with the rotor. It has become a 

standard to position the dq reference frame such that the d-axis is aligned with the position of the rotor 

flux vector, so that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The 

reference frame position must be updated so that the d-axis should be always aligned with the rotor flux 

axis. 

The rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical position 

transducer or position observer can be utilized to measure the rotor position and the position of the rotor 

flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor flux axis, 

the current in the q-axis represents solely the torque producing current component. 

Setting the reference frame speed synchronously with the rotor flux axis further results into d and q axis 

current components appearing as DC values. This implies utilization of simple current controllers to 

control the demanded torque and magnetizing flux of the machine, thus simplifying the control structure 

design. 

Figure 1 shows the basic structure of the vector control algorithm for the PM synchronous motor. To 

perform vector control, it is necessary to perform the following four steps: 
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1. Measure the motor quantities (DC link voltage and currents, rotor position/speed). 

2. Transform measured currents into the two-phase orthogonal system (α, β) using a Clarke 

transformation. After that transform the currents in α, β coordinates into the d, q reference frame 

using a Park transformation. 

3. The stator current torque (isq) and flux (isd) producing components are separately controlled in d, 

q rotating frame. 

4. The output of the control is stator voltage space vector and it is transformed by an inverse Park 

transformation back from the d, q reference frame into the two-phase orthogonal system fixed 

with the stator. The output three-phase voltage is generated using a space vector modulation. 

Clarke/Park transformations discussed above are part of the Automotive Math and Motor Control 

Library set (see [5]  ).  

To decompose currents into torque and flux producing components (isd, isq), position of the motor-

magnetizing flux has to be known. This requires knowledge of accurate rotor position as being strictly 

fixed with magnetic flux. This document deals with the FOC control where the position and velocity is 

obtained by either a position/velocity estimator or incremental Encoder sensor.  

 

Figure 1. Field oriented control transformations 

3.2. PMSM model in quadrature phase synchronous reference frame 

Quadrature phase model in synchronous reference frame is very popular for field oriented control 

structures, because both controllable quantities, current and voltage, are DC values. This allows to 

employ only simple controllers to force the machine currents into the defined states. Furthermore, full 

decoupling of the machine flux and torque can be achieved, which allows dynamic torque, speed and 

position control. 

The equations describing voltages in the three phase windings of a permanent magnet synchronous 

machine can be written in matrix form as follows: 

[

𝑢𝑎

𝑢𝑏

𝑢𝑐

] = 𝑅𝑠 [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] +
𝑑

𝑑𝑡
[

𝜓𝑎

𝜓𝑏

𝜓𝑐

] 

Equation 2 

where the total linkage flux in each phase is given as: 
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[

𝜓𝑎

𝜓𝑏

𝜓𝑐

] = [
𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

] [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] + Ψ𝑃𝑀

[
 
 
 
 

cos (𝜃𝑒)

cos (𝜃𝑒 −
2𝜋

3
)

cos (𝜃𝑒 +
2𝜋

3
)
]
 
 
 
 

 

Equation 3 

where Laa, Lbb, Lcc, are stator phase self-inductances and Lab=Lba, Lbc=Lcb, Lca=Lac are mutual 

inductances between respective stator phases. The term ΨPM represents the magnetic flux generated by 

the rotor permanent magnets, and θe is electrical rotor angle. 

 

Figure 2. Orientation of stator (stationary) and rotor (rotational) reference frames, with current 

components transformed into both frames 

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by 

transforming the three phase voltage equations (Equation 2) and flux equations (Equation 3) into a two 

phase rotational frame which is aligned and rotates synchronously with the rotor as shown in Figure 2. 

Such transformation, after some mathematical corrections, yields the following set of equations: 

[
𝑢𝑑

𝑢𝑞
] = 𝑅𝑠 [

𝑖𝑑
𝑖𝑞

] + [
𝐿𝑑 0
0 𝐿𝑞

]
𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞

] + 𝜔𝑒 [
0 −𝐿𝑞

𝐿𝑑 0
] [

𝑖𝑑
𝑖𝑞

] + 𝜔𝑒Ψ𝑃𝑀 [
0
1
] 

Equation 4 

where ωe is electrical rotor speed. The Equation 4 represents a non-linear cross dependent system, with 

cross-coupling terms in both d and q axis and BEMF voltage component in the q-axis. When FOC 

concept is employed, both cross-coupling terms shall be compensated in order to allow independent 

control of current d and q components. Design of the controllers is then governed by following pair of 

equations, derived from Equation 4 after compensation: 

𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑

𝑑𝑖𝑑
𝑑𝑡

 

Equation 5 

α

β

d

q

ωe

αβ frame – stator coordinates
dq frame – rotor coordinates

θe

iS

iSd

iSq

iSα

iSβ

torque 
component

flux 
component

PM
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𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞

𝑑𝑖𝑞

𝑑𝑡
 

Equation 6 

This equation describes the model of the plant for d and q current loop. Both equations are structurally 

identical, therefore the same approach of controller design can be adopted for both d and q controllers. 

The only difference is in values of d and q axis inductances, which results in different gains of the 

controllers. Considering closed loop feedback control of a plant model as in either equation, using 

standard PI controllers, then the controller proportional and integral gains can be derived, using a pole-

placement method, as follows: 

𝐾𝑝 = 2𝜉𝜔0𝐿 − 𝑅 

Equation 7 

 
𝐾𝑖 = 𝜔0

2𝐿 

Equation 8 

where ω0 represents the system natural frequency [rad/sec] and ξ is the Damping factor [-] of the current 

control loop.  

 

Figure 3. FOC Control Structure 

3.3. Phase current measurement and output voltage actuation 

The 3-phase voltage source inverter shown in Figure 4 uses three shunt resistors (R56, R57, R58) placed 

in three legs of the inverter as phase current sensors. Stator phase current which flows through the shunt 

resistor produces a voltage drop which is interfaced to the Analog-to-Digital Converter (ADC) of 

microcontroller through conditional circuitry. Shunt resistor  R60 is used as DC current sensor. Voltage 

drop is interfaced to GD3000 pre-driver internal operational amplifier and pre-driver is using it to detect 

an overcurrent event. (refer to DEVKIT-MOTORGD Schematic available at [9]  ).  
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Figure 4. 3-phase DC/AC inverter with shunt resistors for current measurement  

The following figure shows a gain setup and input signal filtering circuit for operational amplifier which 

provides the conditional circuitry and adjusts voltages to fit into the ADC input voltage range. 

 

Figure 5. Phase current measurement conditional circuitry 

The phase current sampling technique is a challenging task for detection of phase current differences 

and for acquiring full three phase information of stator current by its reconstruction. Phase currents 

flowing through shunt resistors produces a voltage drop which needs to be appropriately sampled by the 

ADC when low-side transistors are switched on. The current cannot be measured by the current shunt 

resistors at an arbitrary moment. This is because the current only flows through the shunt resistor when 

the bottom transistor of the respective inverter leg is switched on. Therefore, considering Figure 4, 

phase A current is measured using the R56 shunt resistor and can only be sampled when the low side 

transistor Q2 is switched on. Correspondingly, the current in phase B can only be measured if the low 

side transistor Q3 is switched on, and the current in phase C can only be measured if the low side 

transistor Q4 is switched on. To get an actual instant of current sensing, transistor switching 

combination needs to be known. 

Generated duty cycles (phase A, phase B, phase C) of two different PWM periods are shown in Figure 

6. These phase voltage waveforms correspond to a center-aligned PWM with sine-wave modulation. As 

shown in the following figure, (PWM period I), the best sampling instant of phase current is in the 

middle of the PWM period, where all bottom transistors are switched on. However, not all three currents 

can be measured at an arbitrary voltage shape. PWM period II in the following figure shows the case 

when the bottom transistor of phase A is ON for a very short time. If the ON time is shorter than a 

certain critical time (depends on hardware design), the current cannot be correctly measured. 
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Figure 6. Generated phase duty cycles in different PWM periods 

In standard motor operation, where the supplied voltage is generated using the space vector modulation, 

the sampling instant of phase current takes place in the middle of the PWM period in which all bottom 

transistors are switched on. If the duty cycle goes to 100%, there is an instant when one of the bottom 

transistors is switched on for a very short time period. Therefore, only two currents are measured and the 

third one is calculated from equation: 

𝑖𝐴 + 𝑖𝐵 + 𝑖𝐶 = 0 

Equation 9 

NOTE 

Although, there are three shunt resistors available on the power stage 

board (R56, R57, R58) and S32K344 has three AD converters, only two 

currents are measured simultaneously in this application in order to 

demonstrate ADC Single-shot mode and BCTU control mode in parallel. 

Third stator current is calculated based on Equation 9. To measure two 

stator currents in two inverter legs correctly, minimum ON times for the 

low-side switches are ensured by appropriate duty cycle limit.  

3.4. Rotor position/speed estimation 

In this application, rotor position and speed are either estimated sensorless by eBEMF observer or 

obtained by Encoder sensor. eBEMF observer as well as incremental Encoder sensor provide only 

relative position. To get absolute position, initial position must be known. This application uses 

mechanical rotor alignment when the rotor is moved from unknown to known position. The two stage 

alignment process is described in details in the section State – ALIGN. 

Application in Sensorless mode must start with open loop start-up sequence to move the motor up to a 

speed value where the observer provides sufficiently accurate speed and position estimations. As soon as 

the observer provides appropriate estimates, application transits to closed-loop mode, when the rotor 

speed and position calculation is based on the estimation of a eBEMF in the stationary reference frame 

using a Luenberger type of observer. eBEMF observer is a part of the NXP’s Automotive Math and 

Motor Control library.  
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Application in encoder mode can start from zero speed because speed and position are provided by 

sensor.  

Structure and implementation details are discussed in section AMMCLib Integration.  

3.5. Field weakening 

Field weakening is an advanced control approach that extends standard FOC to allow electric motor 

operation beyond base speed. The back electromotive force (BEMF) is proportional to the rotor speed 

and counteracts the motor supply voltage. If a given speed is to be reached, the terminal voltage must be 

increased to match the increased stator BEMF. A sufficient voltage is available from the inverter in the 

operation up to the base speed. Beyond the base speed, motor voltages ud and uq are limited and cannot 

be increased because of the ceiling voltage given by inverter. Base speed defines the rotor speed at 

which the BEMF reaches maximal value and motor still produces the maximal torque. 

As the difference between the induced BEMF and the supply voltage decreases, the phase current flow 

is limited, hence the currents id and iq cannot be controlled sufficiently. Further increase of speed would 

eventually result in BEMF voltage equal to the limited stator voltage, which means a complete loss of 

current control. The only way to retain the current control even beyond the base speed is to lower the 

generated BEMF by weakening the flux that links the stator winding. Base speed splits the whole speed 

motor operation into two regions: constant torque and constant power, see Figure 7. 

 

Figure 7. Constant torque/power operating regions 

Operation in constant torque region means that maximal torque can be constantly developed while the 

output power increases with the rotor speed. The phase voltage increases linearly with the speed and the 

current is controlled to its reference. The operation in constant power region is characterized by a rapid 

decrease in developed torque while the output power remains constant. The phase voltage is at its limit 

while the stator flux decreases proportionally with the rotor speed, see Figure 8. 

Mechanical power

Torque

Constant Torque region Constant Power region

Base speed

Pmech = Te*m

Te =Pmax /m

Pmech=Pmax

Te=Tmax

Speed
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Figure 8. Constant flux/voltage operational regions 

FOC splits phase currents into the q-axis torque component and d-axis flux component. The flux current 

component Id is used to weaken the stator magnetic flux linkage ΨS. Reduced stator flux ΨS yields to 

lower BEMF and condition of Field Weakening is met. More details can be seen from the following 

phasor diagrams of the PMSM motor operated exposing FOC control without (left) and with FW (right), 

as shown in the following figure. 

 

Figure 9. Steady-state phasor diagram of PMSM operation up to base speed (left) and above speed (right) 

FOC without FW is operated demanding d-axis current component to be zero (Id=0) to excite electric 

machine just by permanent magnets mounted on the rotor. This is an operation within constant torque 

region (see Figure 7), since whole amount of the stator current consists of the torque producing 

component Iq only (see Figure 9 left). Stator magnetic flux linkage ΨS1 is composed of rotor magnetic 

flux linkage ΨPM, which represents the major contribution and small amount of the magnetic flux 

linkage in q-axis LqIq produced by q-axis current component Iq. Based on the Faraday’s law, rotor 

magnetic flux linkage ΨPM and stator magnetic flux linkage ΨS1 produce BEMF voltage EPM1=ωe1ΨPM 

perpendicularly oriented to rotor magnetic flux ΨPM in q-axis and BEMF voltage ES1=ωe1ΨS1 

perpendicularly oriented to stator magnetic flux ΨS1, respectively (see Figure 9 left). Both voltages are 

directly proportional to the rotor speed ωe1. If the rotor speed exceeds the base speed, the BEMF voltage 

ES1=ωe1ΨS1 approaches the limit given by VSI and Iq current cannot be controlled. Hence, field 

weakening has to take place. 

Voltage control range

Base speed SpeedBase speed

Stator voltage  VS

Stator flux  S

Field-weakening control Field-weakening control

q- axis

d- axis

IS = Iq

EPM1 = e1PM

VS1

S1

RS IS
jXSIS

q- axis

d- axis

IS Iq

Id

VS2

S2

RS IS

jXSIS

-Ld Id

IMAX IMAX

ES2 = e2S2
ES1 = e1S1

Lq Iq
Lq Iq

VSI voltage capability VSI voltage capability

EPM2 = e2PM

PMPM

e1 < e2

EPM1 < EPM2
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In FW operation, Id current is controlled to negative values to “weaken” stator flux linkage ΨS2 by -LdId 

component as shown in Figure 9 right. Thanks to this field weakening approach, BEMF voltage induced 

in the stator windings ES2 is reduced below the VSI voltage capability even though EPM2 exceeds it. Iq 

current can be controlled again to develop torque as demanded. Unlike the previous case, this is an 

operation within constant power region (see Figure 7), where Iq current is limited due to Is current vector 

size limitation (see Figure 9 right). In FW operation, stator magnetic flux linkage ΨS consists of three 

components now: rotor magnetic flux linkage ΨPM, magnetic flux linkage in q-axis Ψq= LqIq produced by 

q-axis current component Iq and magnetic flux linkage in d-axis Ψd= -LdId produced by negative d-axis Id 

current component that counteracts to ΨPM. 

There are some limiting factors that must be taken into account when operating FOC control with field 

weakening: 

• Voltage amplitude u_max is limited by power as shown in Figure 10 left 

• Phase current amplitude i_max is limited by capabilities of power devices and motor thermal 

design as shown in Figure 10 right 

• Flux linkage in d-axis is limited to prevent demagnetization of the permanent magnets 

 

Figure 10. Voltage (left) and current (right) limits for PMSM drive operation 

NXP’s Automotive Math and Motor Control library offers a software solution for the FOC with field 

weakening respecting all limitations discussed above. This library based function is discussed in section 

AMMCLib Integration. 

4.  Software implementation on the S32K344 

4.1. S32K344 – Key modules for PMSM FOC control 

The S32K344 device includes modules such as the Enhanced Modular IO Subsystem (eMIOS), Logic 

Control Unit (LCU), Trigger MUX (TRGMUX), Body Cross-triggering Unit (BCTU) and Analogue-to-

Digital Converter (ADC) suitable for real-time control applications, in particular, motor control 

applications. These modules are directly interconnected and can be configured to meet various motor 

control application requirements. Figure 11 shows a module interconnection for a typical PMSM FOC 

application working in sensorless or sensor-based mode using dual shunt current sensing and encoder 

position sensor. The modules are described below and the detailed description can be found in the 

S32K3xx Reference Manual (see [7]  ). 
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4.1.1. Module interconnection 

The modules involved in output actuation,  data acquisition and  synchronization of actuation and 

acquisition, form the so-called Control Loop. This control loop consists of the eMIOS, LCU, TRGMUX, 

BCTU and ADC modules. The control loop is a modular concept and is very  flexible in operation and 

can support static, dynamic or asynchronous timing.  

eMIOS plays a role of the real time timer/counter. Within the control loop it is responsible for 

generation of PWM signal (period, duty cycle), generation of the trigger for analogue data capturing in 

the precise moment or counting edges of encoder signal. LCU enriches this modular concept with 

advance features. In PWM generation it is responsible for creation of PWM complementary pairs, dead 

time insertion, disabling/enabling PWM outputs or it preprocess signals from an encoder sensor to get 

quadrature decoder functionality.  

BCTU and ADC modules are responsible for analog data capturing. BCTU answers question “what is 

going to be measured?” by a predefined list of ADC channels. The ADC answers question “How it is 

going to be measured? ” by setting a conversion resolution, sampling duration etc.  

eMIOS and LCU are connected through TRGMUX unit which is responsible for a configurable signal 

interconnection within the microcontroller. The eMIOS channels CH1-CH3 create 3-phase center 

aligned PWM signal and share PWM time base CH0. The center aligned PWM is formed using flexible 

Output Pulse Width Modulation Buffered (OPWMB) eMIOS mode where each channel uses two 

compare registers (A, B) to control rising and falling edge independently.  LCU OUT0-OUT5 create 

commentary PWM pairs to control particular MOSFET transistors. The LCU uses true tables, output 

polarity control and configurable digital filters to generate control signals for transistors with inserted 

deadtime. The eMIOS CH4 is dedicated for trigger functionality. Same as in case of PWM signals 

OPWMB mode is also used for trigger. The CH4 is linked with trigger time base CH23. Time bases 

CH0 and CH23 are synchronized, what offers possibility of an  independent configuration of sampling 

and PWM frequency. 

BCTU is linked with eMIOS channels through the channel flag. When the flag is set, BCTU starts to 

execute conversions according to the list of conversions and clears the flag back. BCTU is capable of 

controlling all three ADCs, so list of single or parallel conversions can be invoked. In this example a list 

of parallel conversions of ADC0 and ADC1 is used to obtain phase currents and DC-bus voltage. 

Conversion results are stored to BCTU FIFO. ADC2 is used for microcontroller temperature 

measurement to demonstrate non real time background measurement.  

Quadrature decoder functionality is achieved by cooperation of eMIOS, LCU and TRGMUX. LCU 

decodes encoder signals PHA and PHB into digital signals, which carry captured edges per particular 

rotor direction. The eMIOS module works as a counter and holds captured edges for clockwise CH5 and 

counter clockwise CH6 direction. Absolute position is obtained by subtracting counters values. 

Detailed description can be found in the S32K3xx Reference Manual (see [7]  ).  
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Figure 11.  S32K344 module interconnection 

4.1.2. S32K344 and FETs pre-driver interconnection 

Excitation of power FETs is ensured by NXP GD3000 pre-driver. This analog device is equipped with 

charge pump that ensures external FETs drive at low power supply voltages. Moreover, three external 

bootstrap capacitors provide gate charge to the high-side FETs (see [9]   [10]  ). NXP’s Three-Phase 

Brushless Motor Pre-Driver Software Driver (TPP) is used to control and to configure GD3000. 

Configuration of GD3000 pre-driver is realized via LPSPI1 module. The GD3000 allows different 

operating modes to be set and locked by SPI commands. SPI commands also report condition of the 

GD3000 based on the internal monitoring circuits and fault detection logic. S32K344 detects fault state 

of the GD3000 by means of interrupt signal on PTC7 pin. Integrated current sensing amplifier with 

analog comparator allow to measure DC bus current and detect overcurrent. Interconnection between 

S32K344 and GD3000 is briefly depicted in Figure 11. 

4.1.3. Module involvement in digital PMSM FOC control loop 

This section will discuss timing and modules synchronization to accomplish PMSM FOC on the 

S32K344 and the internal hardware features. 
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The time diagram of the automatic synchronization between PWM and ADC in the PMSM application 

is shown in Figure 12. 

The PMSM FOC control with dual-shunt current measurement is based on static timing. It means the 

trigger point of the ADC conversions is located at same place within every control loop cycle. This 

trigger point is also configurable during runtime.  

eMIOS timer uses the concept of time bases for signal synchronization. There are 5 channels (CH0, 

CH8, CH16, CH22 and CH23) which can act as the time base what means that other channels can see 

value of their counter through the bus. CH0,CH8,CH16 can create local time bases for 7 channels and 

CH22 and CH23 can create a global time bases for any channel. In the example CH0 creates the PWM 

time base for channels CH1,CH2 and CH3 which are responsible for PWM signal generation. The CH23 

creates a TRIGGER time base for CH4 which is responsible for triggering BCTU.  Both time bases 

operate in Modulus Counter Buffered (MCB) up counting mode, where period is set by register A. It is 

possible to start time bases synchronously by enabling eMIOS global prescaler. Offset between time 

bases is given by time base channel initial counter value. In this example time bases are synchronous 

with no offset.  

PWM frequency is 20 kHz and sampling frequency is 10 kHz. PWM channels and trigger channels 

operates in OPWMB mode. Channel output signal is formed by comparing channel registers A and B 

with time base counter. For example PWM signal for phase A is generated by output of the CH1. Center 

aligned PWM is achieved by proper setting of registers A and B. PWM A signal is routed to LCU where 

complementary signals for particular MOSFETs are created (LCU0 OUT0 and OUT1) respecting pre-

driver input polarity and the dead time is inserted.      

Trigger signal CH4 is formed in the same way as PWM signals. An important point here is that the 

connection between BCTU and CH4 is through the CH4 flag and not through the CH4 output. Flag can 

be generated on both compares or on compare with register B only. In this example, the flag is set on 

register B only it means on falling edge of the CH4 output signal. CH4 output signal can be routed using 

the TRGMUX to microcontroller pin for trigger debugging.  

When flag of eMIOS CH4 is set, the BCTU starts list of conversions controlling ADC0 and ADC1 and 

also clears back the CH4 flag. IPHA and IPHB stator currents are measured simultaneously at the beginning 

of PWM cycle, which is in the middle of non-active vector, where bottom MOSFETs of both inverter 

legs are open, and currents flow through shunt resistors. DC-bus voltage UDCbus is measured in the 

following sample. The ADC results are stored into BCTU FIFO result registers and interrupt is raised on 

watermark event. FOC control algorithm calculates new duty-cycle values based on measured currents 

and DC-bus voltage and updates eMIOS channels CH1, CH2, CH3. Register A and B are double-

buffered so change will be coherently propagated on channels time base reload.  
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Figure 12. Time Diagram of PWM and ADC Synchronization 

4.2. S32K344 device initialization 

To simplify and accelerate an application development, embedded part of the PMSM FOC motor control 

application has been created using S32 Design studio, RTD drivers (low level part) and S32K344 is 

configured using S32 Configuration Tools, see the following figure. 

 

Figure 13. Config tools 

Figure 14 describes the example project structure in the S32 Design Studio. Current settings of Config 

tools are stored in MCSPTE1AK344_PMSM_FOC_2Sh_ll.mex file and generated files by config tools 

(all configuration structures) can be found in folders board and generate. When a component is added 

using the config tool, its SW driver is copied into folder RTD so only used drivers are part of the project.  
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Figure 14. Example project structure 

Peripherals are initialized at beginning of the main() function. For each S32K344 module, there is a 

specific initialization function, that uses configuration structures generated by Config tools to configure 

the MCU. XXX_Init functions must be called before any other Application Programming Interface 

(API) from the module. It is important to initialize Clock and OsIf at first. OsIf  initializes systic timer 

which can be used for timeout measurements in other modules. The last function to call during the 

initialization process is Emios_Mcl_Ip_Init. It initializes time bases and enables their counters what 

initiate control cycle. 

List of the initialization APIs: 

• Clock_Ip_Init() -  Initializes  MCU clock configuration  

• OsIf_Init() - Initializes the OS interface (basic timing/Os services for drivers)  

• IntCtrl_Ip_Init() - Initializes the configured interrupts 

• IntCtrl_Ip_ConfigIrqRouting() - Initializes interrupt handlers  

• Siul2_Port_Ip_Init() - Initializes  PINs and PORT configuration 

• Trgmux_Ip_Init() - Initializes  TRGMUX module configuration 

• Lpuart_Uart_Ip_Init() - Initializes LPUART module configuration 

• Adc_Sar_Ip_Init() - Initializes  ADC modules configuration 

• Lcu_Ip_Init() - Initializes LCU module configuration 

• Lpspi_Ip_Init() - Initializes LPSPI module configuration 

• Siul2_Icu_Ip_Init() - Initializes input capture configuration for External Interrupt Request 

(EIRQ)   

• Emios_Pwm_Ip_InitChannel() - Initializes emios PWM and Trigger channels configuration 

• Emios_Icu_Ip_Init() - Initializes eMios input capture configuration  

• Bctu_Ip_Init() - Initializes BCTU module configuration 

• Emios_Mcl_Ip_Init() - Initializes eMios time-bases configuration 

RTD documentation can be found in the folder created in the S32 Design Studio installation path: 

Startup, linker, debug configurations

RTD driver & generated files 

FreeMASTER driver

GD3000 TPP
driver

FreeMASTER project 
and MCAT Configuration of a graphic S32DS configuration tool

Application software

Compilation output
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“c:\NXP\S32DS\software\PlatformSDK_S32K3_2022_03\SW32K3_RTD_4_4_2_0_0_D2203” 

4.2.1. Port control and pin configuration 

PMSM FOC sensorless motor control application requires following on chip pins assignment:  

Table 1. Pins assignment for S32K344 PMSM Sensorless FOC control 

Module Signal name  Pin name / 

Functionality 

Description 

LCU0 

PWMA_HS PTD2 / LCU0_OUT1 PWM signal for phase A high-side driver (inverted) 

PWMA_LS PTD3 / LCU0_OUT0 PWM signal for phase A low-side driver 

PWMB_HS PTA2 / LCU0_OUT3 PWM signal for phase B high-side driver (inverted) 

PWMB_LS PTA3 / LCU0_OUT2 PWM signal for phase B low-side driver 

PWMC_HS PTA1 / LCU0_OUT5 PWM signal for phase C high-side driver (inverted) 

PWMC_LS PTA0 / LCU0_OUT4 PWM signal for phase C low-side driver 

ADC0 
DCB_V  PTD0 / ADC0_P1 DC bus voltage measurement  

PHB_I PTA8 / ADC0_P2 Phase B stator current measurement 

ADC1 PHA_I PTA13 / ADC1_P1 Phase A stator current measurement 

LPSPI1 

GD3000_CLK PTB14 / LPSPI1_SCK  SPI clock (1MHz) 

GD3000_SIN PTB15 / LPSPI1_SIN SPI input data from GD3000 

GD3000_SOUT PTB16 / LPSPI1_SOUT SPI output data for GD3000 

LPUART6 
FMSTR_TX PTA16 / LPUART6_RX UART transmit data (FreeMASTER) 

FMSTR_RX PTA15 / LPUART6_TX UART receive data (FreeMASTER) 

TRGMUX 

TST_TGMX_O12_B21 PTB21 / 

TRGMUX_OUT12 
Pin for debugging microcontroller internal signals   

TST_TGMX_O9_B18 PTB18 / 

TRGMUX_OUT9 
Pin for debugging microcontroller internal signals   

ENC_PHA PTA19 / TRGMUX_IN13 Phase A signal of the Encoder sensor  

ENC_PHB PTA20 / TRGMUX_IN14 Phase B signal of the Encoder sensor 

SIUL2 

GD3000_EN PTB12 / GPIO  Enable signal for GD3000 

GD3000_RST PTB13 / GPIO Reset signal for GD3000 

GD3000_CS PTB17 / GPIO Chip select signal for GD3000 

GD3000_INT PTC7 / EIRQ7 Interrupt signal indicating GD3000 fault 

TST_GPIO_C24 PTC24 / GPIO GPIO toggling to measure execution time 

TST_GPIO_B20 PTB20 / GPIO GPIO toggling to measure execution time 

BTN_INC_SW5 PTB26 / GPIO Application control via board button SW5 

BTN_DEC_SW6 PTB19 / GPIO Application control via board button SW6 

LED_RED PTA29 / GPIO RGB_RED indicating fault state 

LED_GREEN PTA30 / GPIO RGB_GREEN indicating ready/calib state 

LED_BLUE PTA31 / GPIO RGB_BLUE indicating run state 

Pin tool and Peripherals tool simplify configuration and particular RTD drivers offers an API to control 

the ports during the runtime.  

 SIUL2  

System Integration Unit Lite2 (SIUL2) is a peripheral which provides control over all electrical pin 

controls and ports. It enables selection of the functions and electrical characteristics that appear on 

external chip pins. The pins assignment can be carried out by means of Pins tool. The pin assignment of 

the example is shown in Figure 15 . Electrical characteristics as well as functionality are set in “Routing 

Details” tab. Tool also offers visualization of the pinout placement in the selected package.   
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Figure 15. Pins 

In order to control SIUL2, following drivers are used and configured using Peripherals tool.  

 

Figure 16. Pins SW drivers 

Siul2_Dio and Siul_Port drivers uses configuration generated by Pins tool. Siul_Port initializes all pins 

and Siul2_Dio is used to control GPIO functionality as is shown in Example 1 . 

Example 1. Pin control API 
void main (void) 
{ 
... 
 
  Siul2_Port_Ip_Init(NUM_OF_CONFIGURED_PINS0, g_pin_mux_InitConfigArr0); 
... 
} 
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void BctuFifoNotif(void) 
{ 
    cntrState.usrControl.btSpeedUp = Siul2_Dio_Ip_ReadPin(BTN_INC_SW5_PORT, BTN_INC_SW5_PIN); 
    cntrState.usrControl.btSpeedDown = Siul2_Dio_Ip_ReadPin(BTN_DEC_SW6_PORT, BTN_DEC_SW6_PIN); 
... 
    Siul2_Dio_Ip_SetPins(TST_GPIO_C24_PORT, (1 << TST_GPIO_C24_PIN)); 
... 
    Siul2_Dio_Ip_ClearPins(TST_GPIO_C24_PORT, (1 << TST_GPIO_C24_PIN)); 
... 
} 

 
 

Pin PTC7 is used for GD3000 fault state detection so it is configured to external IRQ functionality by 

Pins tool. Siul2_Icu driver is responsible for configuration of an external pin input capture event. In 

“IcuHwInterruptConfigList” tab the driver is informed whether interrupt is going to be used for IRQ 

signal and proper interrupt handler is enabled and can be used in interrupt configuration as is described 

in Interrupts. In “IcuSiul2” tab a prescaler and an interrupt filter for specific EIRQ signal is set to 

eliminate interrupt on random glitches on the pin.   

 

Figure 17. SIUL EIRQ configuration 

“IcuChannels” tab configures more general settings like mode, which edge of the signal should be 

detected and which notification function should be called on this event. Notification function is part of 

custom code. Previous settings are referenced through “IcuChannelRef “ parameter. API functions must 

be called as is shown in the Example 2 in order to apply config settings, to enable interrupt and to enable 

notification function at SIUL level. 
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Figure 18. ICU channel configuration 

Example 2. Pin input capture API  
void main (void) 
{ 
... 
 
    /* Initialize ICU channel for GD3000 interrupt. */ 
    Siul2_Icu_Ip_Init(SIUL2_ICU_IP_INSTANCE, &Siul2_Icu_Ip_0_Config_PB_BOARD_InitPeripherals); 
    /* Enable ICU edge detect for GD3000 interrupt. */ 
    Siul2_Icu_Ip_EnableInterrupt(SIUL2_ICU_IP_INSTANCE, 7U); 
    Siul2_Icu_Ip_EnableNotification(SIUL2_ICU_IP_INSTANCE, 7U); 
... 
} 

 

Example 3. SIUL ICU notification function 
void GD3000_INT_Handler (void) 
{ 
    /* Set GD3000 INT flag. */ 
    gd3000Status.B.gd3000IntFlag = true; 
} 

 

 TRIGGER MUX 

The TRGMUX peripheral provides an extremely flexible mechanism for interconnection of various 

trigger sources to multiple pins/peripherals. It is a very useful feature for debugging. This is configured 

using Trgmux_Ip driver.  
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Figure 19. TRGMUX SW driver 

TRGMUX implements configurable connection between peripherals, which offers flexible triggering 

scheme in S32K3 device. This device has 16 pads (SIUL2) mapped to TRGMUX inputs and TRGMUX 

outputs, so internal signals can be visualized to output pin. In the example pins PTB18 (TRGMUX out 

9) and PTB21(TRGMUX out 12)  are selected as pins for internal signal monitoring. Connection is 

created within TRGMUX hardware group. For example hardware group TRGMUX_IP_SIUL_12_15 

gathers TRGMUX SIUL outputs 12-15. The connection is made by selecting specific hardware output 

and input. PTB18 visualizes output of eMIOS0 CH4 (which is a trigger signal for analogue capturing) 

and PTB21 visualizes eMIOS0 CH1 which is PWM signal for phase A. Other signals like reload can be 

visualized by changing the “Hardware Input” configuration. Setting is applied by calling 

Trgmux_Ip_Init  function. Full list of all possible interconnections can be found in 

S32K3XX_TRGMUX_connectivity.xls attached to S32K3xx Reference Manual  [7]   .  

 

Figure 20. TRGMUX groups for debugging purposes  

4.2.2. Clock and Interrupt configuration 

In order to configure S32K3 clocks and interrupts RTD offers Clocks Configuration tool companioned  

by Clock_Ip driver and Peripherals tool for OSIF and IntCrlt_Ip driver configuration.  
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Figure 21. OS Interface and interrupts  

 Clocking 

S32K344 features a complex clocking sourcing by Fast internal RC oscillator (FIRC), Slow internal RC 

oscillator (SIRC), Fast external crystal oscillator (FXOSC), Slow external crystal oscillator (SXOSC), 

Phase-locked loop (PLL), Clock Generation Module (MC_CGM), Mode Entry module's (MC_ME).  

To run the core of the S32K344 at maximum frequency 160MHz, S32K344 is supplied externally by 16 

MHz crystal. This clock source supplies Phase-lock-loop (PLL) and its output is adjusted to 160 MHz 

frequency. PLL output PHI0 is then used to supply the core CORE_CLK. All real-time control 

peripherals are supplied by CORE_CLK , what eliminates unwanted wait states on the bus when 

peripherals are controlled by core during runtime. 

This clock configuration can be setup by S32 Clock Configuration tool which offers visual graphical 

user interface (GUI) to change the settings. Clock settings are applied by calling Clock_Ip_Init() 

function, where generated configuration by Clocks tool is an argument. 

 

Figure 22. Clocks tool  

Clock setting is summarized in the following table. 

Table 2. S32K144 clock configuration  

Clock Frequency Peripheral 

CORE_CLK 160 MHz ADC0-2,BCTU,LCU0-1,eMIOS0-2 

AIPS_SLOW_CLK 40 MHz LPSPI1, LPUART6,TRGMUX 
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Operating System Interface (OSIF) driver  provides basic timing/OS services for drivers, allowing for 

OS independent implementations. This example is baremetal without operating system, but other drivers 

can use OSIF for timeouts detection. OSIF settings are applied by calling OsIf_Init() function. 

 

Figure 23. Clocks tool  

 Interrupts 

IntCrtl_Ip driver is responsible for an interrupt configuration on S32K3 platform. Settings impact 

Miscellaneous System Control Module (MSCM),  Nested vectored interrupt controller (NVIC), and 

 

Figure 24. Interrupt controller 

interrupt vector table. The example uses two interrupts: External IRQ from pin and Interrupt from 

BCTU. There are three options to set in “Generic Interrupt settings” column “Handler”: undefined 

handler user can set also own custom handler (but this interrupt service routine must be defined in 

custom code) or interrupt service routine from RTD driver. Naming of RTD interrupt service routines 

can be found in integration manual of particular RTD driver. Bctu_0_Isr and 

SIUL2_EXT_IRQ_0_7_ISR handle their interrupt and call notification functions on specific event 

defined by Siul2_Icu and Bctu_Ip component settings in peripheral tool (GD3000_INT_Handler, 

BctuFifoNotif).        
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Interrupt setting and handlers installation to vector table are realized by calling  IntCtrl_Ip_Init(), 

IntCtrl_Ip_ConfigIrqRouting(). 

Example 4. Clock API 
void main (void) 
{ 
... 
 
    /*********************************************************************************************** 
    *Configure and enable interrupts 
    ***********************************************************************************************/ 
    IntCtrl_Ip_Init(&IntCtrlConfig_0); 
    IntCtrl_Ip_ConfigIrqRouting(&intRouteConfig); 
... 
} 

 

4.2.3. Center-aligned PWM 

Generation of the center aligned PWM functionality is realized by modules eMIOS, TRGMUX and 

LCU. In order to configure and control those peripherals following RTD drivers are used: 

Emios_Mcl_Ip to configure eMIOS timebase, Emios_Pwm to configure and control eMIOS PWM 

channels, Lcu_Ip to configure and control LCU and Trgmux_Ip to interconnect eMIOS and LCU.    

  

 

Figure 25. PWM signal forming 

 

Figure 26. Drivers for PWM generation 

 eMIOS 

eMIOS CH0 is configured as a time base for PWM signals. This channel can create local time base for 

CH 1-7. Chanel operates in a Modulus Counter Buffered (MCB) mode where there is just up counting. 

When the internal counter matches a value defined by field period (channel register A of the eMIOS 

channel) and a clock tick occurs, the internal counter is reset to 1 and reload is generated. Considering 

160MHz and bus prescalers DIV_1, the “Default period” 8000 ticks means 50µs/20 kHz. “Offset at 
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start” gives the opportunity to initialize counter value before the counting is started what allows to 

configure delay between multiple synchronized time-bases.   

 

Figure 27. PWM time base configuration 

eMIOS CH 1-3 are configured to generate the PWM signal for motor phases PHA-C. Channels operates 

in Output PWM Buffered (OPWMB) mode. This is the most flexible eMIOS PWM mode, which offers 

independent setting of both PWM signal edges (by channels register A and B) and can form the most 

common types of PWM signal. Channels select local timebase BCDE as a counter bus and timebase 

settings are also referenced through “PwmEmiosBusRef” field. Channel is able to see timebase counter 

value through the BCDE bus and compare it with its registers A and B. “Polarity” defines output state 

on specific compare. Complete timing diagram can be found in Figure 12. Driver offers an abstraction 

where “duty cycle” is an active pulse (space between compare A and B) and “Phase shift” defines 

placement of this active pulse within the PWM period. Proper values for register A and B are calculated 

by driver. Init values of the “Phase shift”  and “duty cycle” are set in Peripherals tool. Settings are 

applied by calling Emios_Pwm_Ip_InitChannel() and Emios_Mcl_Ip_Init() where after calling the 

Emios_Mcl_Ip_Init() time base counting is started. PWM signal is modified during the runtime by 

disabling PWM update, updating the dutycycle and the phase shift and enabling the update. Registers A 

and B are double buffered in OPWMB mode so new values of registers A and B are propagated on 

nearest reload generated by time base.   
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Figure 28. PWM channel configuration 

Example 5. eMIOS API for PWM 
void main (void) 
{ 
... 
 
    /*********************************************************************************************** 
    * eMios Driver 
    ***********************************************************************************************/ 
    Emios_Pwm_Ip_InitChannel(0U, &Emios_Pwm_Ip_BOARD_InitPeripherals_I0_Ch1); 
    Emios_Pwm_Ip_InitChannel(0U, &Emios_Pwm_Ip_BOARD_InitPeripherals_I0_Ch2); 
    Emios_Pwm_Ip_InitChannel(0U, &Emios_Pwm_Ip_BOARD_InitPeripherals_I0_Ch3); 
... 
    /*Enable eMIOS clock at last to ensure the correct trigger order*/ 
    Emios_Mcl_Ip_Init(0U, &Emios_Mcl_Ip_0_Config_BOARD_INITPERIPHERALS); 
... 
 
} 

tBool ACTUATE_SetDutycycle(SWLIBS_3Syst_FLT *fltpwm) 
{ 
... 
 
    Emios_Pwm_Ip_ComparatorTransferDisable(0U,(uint32_t)0b1110U); 
... 
    Emios_Pwm_Ip_SetPhaseShift(0U, 1U, pwmShiftA); 
    Emios_Pwm_Ip_SetDutyCycle(0U, 1U, pwmDutyA); 
    Emios_Pwm_Ip_SetPhaseShift(0U, 2U, pwmShiftB); 
    Emios_Pwm_Ip_SetDutyCycle(0U, 2U, pwmDutyB); 
    Emios_Pwm_Ip_SetPhaseShift(0U, 3U, pwmShiftC); 
    Emios_Pwm_Ip_SetDutyCycle(0U, 3U, pwmDutyC); 
    Emios_Pwm_Ip_ComparatorTransferEnable(0U,(uint32_t)0b1110U); 
} 
 
__________________________________________________________________________________________________________________ 
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 TRIGGER MUX  

TRGMUX ensures a connection between eMIOS and LCU. Settings within the “Hardware group” 

TRGMUX_IP_LCU0_0 connects outputs of eMIOS0 channels 1-3 to LCU0 inputs 0-2. Setting is 

applied by calling Trgmux_Ip_Init()  function.

 

Figure 29. TRGMUX settings for PWM signals 

 LCU 

Logic control unit (LCU) is a peripheral for a real time control, which offers a programmable logic 

function to create output waveforms or to process digital signals. LCU contains three Logic cells (LC) 

embedded each with four inputs and outputs with configurable true table for each output and more other 

features like digital filters, force inputs, sync inputs, SW override logic. In order to generate the PWM 

complementary signal following functionality is needed: Input multiplexing, Look Up Table (LUT), 

Digital filters, output polarity settings as is shown in Figure 30. Full featured LCU diagram can be 

found in S32K3xx Reference Manual [7]  . Lcu_Ip driver is used to configure and to control LCU. In 

this example LCU0 instance is selected to generate PWM complementary pairs. LC0 generate signals 

for phases A and B and LC1 generates signals for Phase C. First configuration relates to inputs 

multiplexing. Configurations 0-2 in “Lcu Logic Input” tab create a connection between LCU instance 

inputs and LC inputs. Multiplexor inputs 0,1(eMIOS0 CH 1,2) are connected to LC0 input 0,1 and 

multiplexor input 2 (eMIOS0 Ch3) is connected to LC1 input 0. Output configuration for 

complementary pairs is in a tab “Lcu Logic Output” configurations 0-5. The first important thing to 

configure is an output polarity. High side inputs of GD3000 have inverted polarity so also related 

outputs have inverted polarity. It ensures that during the time when LCU outputs are disabled all 

MOSFETs are in an inactive state (also different strategies like for example all bottom MOSFETSs on 

can be used by changing the output polarity settings). Next setting is Look-up Table (LUT) for every 

output. LUT defines output state of the LUT Block for every combination of four inputs (combination 

0000 is least significant bit of the LUT register). For example O0 mirrors I0 and O1 (as complementary 

channel) negates I0 as is shown in Table 3. Last thing to configure is a dead time. It is generated using 

digital filters where rising edges of the LUT block output are delayed. Complete waveform composition 
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of complementary channels can be seen in the Figure 30. GD3000 is able to automatically turn off 

MOSFETs when fault occurs. In case of simpler drivers or external fault logic, LCU offers 

asynchronous Force logic which can automatically disable LCU outputs on external pin event. For more 

details about this feature see S32K3xx Reference Manual [7]  . In order to configure and control LCU, a 

Lcu_Ip RTD driver is used. Settings are applied by calling Lcu_Ip_Init() function and outputs can be 

enabled/disabled by calling Lcu_Ip_SetSyncOutputEnable().         

 

Figure 30. Simplified LCU features block diagram for PWM 

Table 3. LUT configurations for LCU0 LC0 

LC0_I3 LC0_I2 LC0_I1 LC0_I0  LC0_O0 LC0_O1 LC0_O2 LC0_O3 
x x PWM_PHB PWM_PHA  PWMA_LS PWMA_HS PWMB_LS PWMB_HS 
0 0 0 0  1 0 1 0 
0 0 0 1  0 1 1 0 
0 0 1 0  1 0 0 1 
0 0 1 1  0 1 0 1 
0 1 0 0  1 0 1 0 
0 1 0 1  0 1 1 0 
0 1 1 0  1 0 0 1 
0 1 1 1  0 1 0 1 
1 0 0 0  1 0 1 0 
1 0 0 1  0 1 1 0 
1 0 1 0  1 0 0 1 
1 0 1 1  0 1 0 1 
1 1 0 0  1 0 1 0 
1 1 0 1  0 1 1 0 
1 1 1 0  1 0 0 1 
1 1 1 1  0 1 0 1 

LUT  0x5555 0xAAAA 0x3333 0xCCCC 
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Figure 31. LCU instance configuration for PWM 

 

Figure 32. LC inputs configuration for PWM  

 

Figure 33. LC outputs for PWM  
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4.2.4. Analogue data capturing 

Motor control analogue feedback capturing is realized by ADC0, ADC1, BCTU and eMIOS peripherals. 

BCTU controls parallel conversion of ADC0 and ADC1. eMIOS defines the trigger point when the 

conversion should start. ADC2 was reserved for a MCU temperature measurement and is not controlled 

by BCTU in order to demonstrate a non-real time measurement in parallel to real time control. In order 

to configure and to control those peripherals, following RTD sw drivers are used: Adc_Sar_Ip, Bctu_Ip, 

Emios_Mcl_Ip, Emios_Pwm. 

 

Figure 34. MC analog feedback capturing  

 

 

Figure 35. Drivers for analogue feedback capturing  

 ADC 

The S32K344 device has three Analog-to-Digital Converters (ADCs) with the SAR algorithm. The ADC 

channels are divided into three groups - Precision, Standard and External (each allows independent 

configuration settings and different accuracy/performance level). Each channel has selectable resolution 

(8-, 10-, 12-, 14-bit). Conversion can be started by Normal conversion trigger, Injected conversion 

trigger or BCTU conversion trigger. There is also special mode , BCTU control mode, where it is 

explicitly set that only the BCTU can start a conversion of ADC instance. All other trigger sources are 

ignored. This mode is used for MC measurement ADC0 and ADC1 whereas ADC2 executes normal 

conversion invoked by SW. The most important setting can be seen in the Peripherals tools settings. 

Settings are applied calling Adc_Sar_Ip_Init() function and after the configuration ADCs are calibrated 

by Adc_Sar_Ip_DoCalibration(). Temperature measurement is invoked by 

Adc_Sar_Ip_TempSenseGetTemp() function as a non-real time control background task.  

EMIOS BCTU
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Trigger

Result
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ADC1

Trigger
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Figure 36. ADC configuration for MC measurements 

 

Figure 37. ADC configuration for temperature measurements  

Example 6. ADC API 
void main (void) 
{ 
... 
 
    /*********************************************************************************************** 
    * ADC Driver 
    ***********************************************************************************************/ 
    do { 
        status = (StatusType)Adc_Sar_Ip_Init(0U, &AdcHwUnit_0_BOARD_INITPERIPHERALS); 
    } while (status != E_OK); 
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    do { 
        status = (StatusType)Adc_Sar_Ip_Init(1U, &AdcHwUnit_1_BOARD_INITPERIPHERALS); 
    } while (status != E_OK); 
 
    do { 
        status = (StatusType)Adc_Sar_Ip_Init(2U, &AdcHwUnit_2_BOARD_INITPERIPHERALS); 
    } while (status != E_OK); 
 
    do { 
        status = (StatusType)Adc_Sar_Ip_DoCalibration(0U); 
    } while (status != E_OK); 
 
    do { 
        status = (StatusType)Adc_Sar_Ip_DoCalibration(1U); 
    } while (status != E_OK); 
 
    do { 
        status = (StatusType)Adc_Sar_Ip_DoCalibration(2U); 
    } while (status != E_OK); 
 
    /* TempSenseEnable */ 
    Adc_Sar_Ip_TempSenseEnable(0U); 
... 
    /* MCU chip temperature detection. */ 
    TemperatureGetStatus = Adc_Sar_Ip_TempSenseGetTemp(2U, 0U, &TemperatureRaw); 
... 
 
} 
 
__________________________________________________________________________________________________________________ 

 BCTU 

S32K344 has single instance of a BCTU. The BCTU accepts ADC conversion-request trigger inputs and 

routes those requests to one or more ADCs. There are 72 trigger inputs. 69 inputs are coming from 

eMIOS channels (connection is realized through channels flag) and three from TRGMUX ( TRGMUX 

output is routed to BCTU). All triggers can be also invoked by a software instead of the HW source. 

Every trigger can be configured to invoke single conversion or predefined list of conversions. 

Conversion result can be stored into BCTU data register (there is one register per ADC instance), one of 

the BCTU FIFOs or  into a memory buffer by DMA transfer. Conversion results remain also in the 

result register of ADC channel.  

In this example eMIOS0 CH4 is selected as a trigger for MC analogue quantities measurement. FIFO1 is 

selected for “Data Destination”. The trigger is configured as a list of parallel conversions ADC0, ADC1 

in “Adc Target Mask”. List of ADC channels is defined in “BCTU List Items” while order is given by 

the “Adc Target Mask”: BctuListItems_0 is ADC0, BctuListItems_1 is ADC1 etc. Watermark of the 

FIFO1 “Watermark Value” is set on 3 and “Interrupt Notification” is enabled. When the trigger comes, 

parallel conversion of the first two list items starts (phase currents) and once conversion has been 

completed, next channel couple takes a place (DC bus voltage and dummy measurement). Once all 

results has been stored into the FIFO, an interrupt is raised and handled by BCTU RTD interrupt handler 

and custom notification function  Bctu_FIFO1_WatermarkNotification is called. Conversion result 

(Data and additional information about conversion like trigger number, ADC channel and ADC 

instance) are read from the FOFO using Bctu_Ip_GetFifoResult() function. Settings are applied by 

calling Bctu_Ip_Init() function. After enabling the notification function and BCTU global trigger, BCTU 

is active.  
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Table 4. Possible variations of ADC target mask 

ADC target mask Defines the BCTU ADC command list operating mode 

LIST  SINGLE 

0 0 1 of single conversions ADC0 conversion  ADC0 

0 1 0 of single conversions ADC1 conversion  ADC1 

1 0 0 of single conversions ADC2 conversion  ADC2 

0 1 1 of parallel conversions ADC0, ADC1 X 

1 1 0 of parallel conversions ADC1, ADC2 X 

1 0 1 of parallel conversions ADC0, ADC2 X 

1 1 1 of parallel conversions ADC0, ADC2, ADC3 X 

  

 

Figure 38. BCTU Trigger configuration 

 

 

Figure 39. BCTU list configuration 
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NOTE 

BctuListItems_3 (P3_ChanNum3) is dummy measurement since the list is 

list of two parallel measurements and only 3 motor control quantities are 

measured (current phase A , current phase B, DC bus voltage)  

 

 

Figure 40. BCTU FIFO configuration  

Example 7. BCTU API 
void main (void) 
{ 
... 
 
    /*********************************************************************************************** 
    * BCTU Driver 
    ***********************************************************************************************/ 
 
    Bctu_Ip_Init(0U, &BctuHwUnit_0_BOARD_INITPERIPHERALS); 
    Bctu_Ip_EnableNotifications(0U, BCTU_IP_NOTIF_LIST); 
    Bctu_Ip_SetGlobalTriggerEn(0U, TRUE); 
... 
 
} 
 
void Bctu_FIFO1_WatermarkNotification (void) 
{ 
... 
    mCount = 0; 
    while (Bctu_Ip_GetFifoCount(0U, 0U)) 
    { 
        Bctu_Ip_GetFifoResult(0U, 0U, &measuredValues[mCount++]); 
    } 
... 
 
__________________________________________________________________________________________________________________ 

 eMIOS 

eMios channel 4 is configured to generate the trigger for BCTU in precise moment. Same modes and 

drivers are used as in the use case of  PWM generation in chapter eMIOS. Trigger channel uses a global 

time base A (CH 23). This trigger time base is synchronized with PWM time base with no delay. 

Considering 160 MHz, a period 16000 tick means 100 µs so the sampling frequency of motor quantities 

is 10 kHz. An important setting for CH4 is “Flag generation”. Trialing_Edge means generating 

flag(what is the event when BCTU is triggered) on compare with register B. With a used “Polarity” it is 
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in the falling edge of the CH4 output, which can be visualized on the pin using TRGMUX. Trigger is 

generated five cycles after reload (PWM time base reload and Trigger time base reload are overlapping 

since there is no delay). In this example the trigger moment is not changing during the runtime, but it 

possible to change trigger moment in same way like update of PWM channels. Settings are applied by 

calling Emios_Pwm_Ip_InitChannel() and Emios_Mcl_Ip_Init functions(). 

 

Figure 41. eMIOS trigger configuration  

Example 8. eMIOS API for PWM 
void main (void) 
{ 
... 
 
    /*********************************************************************************************** 
    * eMios Driver 
    ***********************************************************************************************/ 
... 
    Emios_Pwm_Ip_InitChannel(0U, &Emios_Pwm_Ip_BOARD_InitPeripherals_I0_Ch4); 
... 
    /*Enable eMIOS clock at last to ensure the correct trigger order* 
    Emios_Mcl_Ip_Init(0U, &Emios_Mcl_Ip_0_Config_BOARD_INITPERIPHERALS); 
... 
 
} 
 
__________________________________________________________________________________________________________________ 

4.2.5. Quadrature decoder 

Quadrature decoder feature is achieved by cooperation of eMIOS, TRGMUX and LCU modules. This 

feature is used to decode the quadrature signals generated by rotary sensors used in motor control 

domain. This mode is used to process encoder signals and determine rotor position and speed. 

There are three output signals generated by incremental encoder as shown in Figure 42. Phase A and 

Phase B signals consist of a series of pulses which are phase-shifted by 90° (therefore the term 
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“quadrature” is used). The third signal (called “Index”) provides the absolute position information. In 

the motion control, it is used to check the pulse-counting consistency. Index signal is not used in this 

example hence position offset is calibrated during the rotor alignment.  

In order to get the rotor position encoder signals PHA and PHB are brought to the LCU. LCU 

preprocess them and generates pulses based on rotor speed direction. eMIOS acts as a counter to get the 

rotor absolute position. An angle tracking observer (ATO) is used to calculate the final rotor speed and 

position. Emios_Icu, Lcu_Ip and Trgmux_Ip drivers are used to control and to configure peripherals for 

this use case.    

 

Figure 42. Output signals of the 1024 pulses Encoder  

 

 

Figure 43. Peripherals interconnection for quadrature encoder 

 

Figure 44. Drivers for quadrature decoder feature 

NOTE 

This routine is disabled by default, since PM motor of the S32K344 motor 

control kit is not equipped with encoder sensor. To enable encoder signal 

processing routine, set ENCODER macro to true. 

 TRIGGER MUX 

TRGMUX ensures a connection between Input pins and LCU and between eMIOS and LCU. Settings 

within the “Hardware Group” ENCODER_PINS_TO_LCU connects PTA19(TRGMUX_IN13) and  

PTA20(TRGMUX_IN14) to LCU1 inputs 0-1. Settings within the “Hardware Group” 
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ENCODER_LCU_TO_EMIOS connects LCU1 LC0 outputs 2-3 to eMIOS0 inputs of channels 5-6. The 

setting is applied by calling Trgmux_Ip_Init()  function. 

 

Figure 45. TRGMUX settings for quadrature decoder 

 LCU 

In this example LCU1 instance is selected for preprocessing encoder signals phase A and phase B. Same 

LCU features are used as in chapter LCU but, whole preprocessing is realized in LC0. Configurations 3-

6 in “Lcu Logic Input” tab create a connection between LCU instance inputs and LC inputs. Multiplexor 

inputs 0,1(pins PTA19,PTA20) are connected to LC0 input 0,1 and multiplexor feedback input 0,1 (LC0 

out 0,1) is connected to LC0 input 2,3. Outputs configurations are in a tab “Lcu Logic Output” 

configurations 6-9. True tables of outputs 0,1 just mirror inputs 0,1 and rising and falling edge is delayed 

by digital filters. True tables of outputs 2,3 use information of all inputs. They detect edges of the 

encoder phases PHA and PHB using auxiliary signals PHA0 and PHB0 as is depicted in waveform 

Figure 46. Detected edge is represented by short pulse (in this example 5 ticks filters settings of outputs 

0,1). Based on actual value of signals PHA and PHB, logic function in LUT distinguishes the direction 

of rotation and a detected edge is placed on proper output (cw or ccw). True tables of all outputs (given 

by LUT) can be found in Table 5. Filters of outputs 2 and 3 work as a glitch filters. If generated pulse is 

shorter than 4 ticks it will not appear on the output. It is protection against a noise on ENC_PHA and 

ENC_PHB pins. All settings are applied by calling Lcu_Ip_Init() function. 
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Figure 46. Simplified LCU features block diagram for quadrature decoder 

 

Figure 47. LCU instance configuration for quadrature decoder 

Table 5. LUT configurations for LCU1 LC0 

LC0_I3 LC0_I2 LC0_I1 LC0_I0  LC0_O0 LC0_O1 LC0_O2 LC0_O3 
ENC_PHB0 ENC_PHA0 ENC_PHB ENC_PHA  ENC_PHA0 ENC_PHB0 Pulses cw Pulses ccw 

0 0 0 0  0 0 0 0 

0 0 0 1  1 0 1 0 

0 0 1 0  0 1 0 1 

0 0 1 1  1 1 0 0 

0 1 0 0  0 0 0 1 

0 1 0 1  1 0 0 0 

0 1 1 0  0 1 0 0 

0 1 1 1  1 1 1 0 

1 0 0 0  0 0 1 0 

1 0 0 1  1 0 0 0 

1 0 1 0  0 1 0 0 

1 0 1 1  1 1 0 1 

1 1 0 0  0 0 0 0 

1 1 0 1  1 0 0 1 

1 1 1 0  0 1 1 0 
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LC0_I3 LC0_I2 LC0_I1 LC0_I0  LC0_O0 LC0_O1 LC0_O2 LC0_O3 
1 1 1 1  1 1 0 0 

LUT  0xAAAA 0xCCCC 0x4182 0x2814 

 

Figure 48. LCU inputs configuration for quadrature decoder  

 

Figure 49. LCU outputs for quadrature decoder  

 eMIOS  

eMIOS0 channels 5 and 6 are channels of type G so they contain their own counter and are able to count 

edges of the channel input signal. In the example, those channels operates in modulus counter buffered 

(MCB) mode and count rising edges of signals coming from LCU which represents detected edges of 

signals PHA and PHB of the encoder sensor. For more details about eMIOS channel types see S32K3xx 

Reference Manual [7]  . All settings are applied by calling Emios_Icu_Ip_Init() function and by enabling 

edge counting using Emios_Icu_Ip_EnableEdgeCount() functions. Actual counter value is obtained by 

calling Icu_GetEdgeNumbers() for particular channel. 
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Figure 50. General ICU configuration  

 

 

Figure 51. eMIOS channels for input capture  

NOTE 

Property IcuSubModeforMeasurement is not applicable for 

ICU_MODE_EDGE_COUNTER. Channels are set into MCB mode by 

calling  Emios_Icu_Ip_EnableEdgeCount function.  

Example 9. eMIOS API for quadrature decoder 
void main (void) 
{ 
... 
 
    /*********************************************************************************************** 
    * eMios Driver 
    ***********************************************************************************************/ 
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    Emios_Icu_Ip_Init(0U, &eMios_Icu_Ip_0_Config_PB_BOARD_INITPERIPHERALS); 
    Emios_Icu_Ip_EnableEdgeCount(0u, 5U); 
    Emios_Icu_Ip_EnableEdgeCount(0u, 6U); 
... 
 
} 

tBool POSPE_GetPospeElEnc (encoderPospe_t *ptr) 
{ 
... 
 
    counterCW   = (uint16_t) ((Icu_GetEdgeNumbers(IcuChannel_1))- ptr->counterCwOffset);      /* CW  counter */ 
    counterCCW  = (uint16_t) ((Icu_GetEdgeNumbers(IcuChannel_2))- ptr->counterCcwOffset);     /* CCW counter */ 
... 
} 

NOTE 

Various input pins or TRGMUX output can be selected for eMIOS input. 

This selection is realized in SIUL2 IMCR register. 

4.2.6. Communication  

 UART  

LPUART6 is used as a communication interface between S32K344 MCU and FreeMASTER run-time 

debugging and visualization tool. Lpuart_Uart RTD driver is used to configure LPUART. Configuration 

is applied by calling Lpuart_Uart_Ip_Init(). LPUART must be configure before any API of 

FreeMASTER embedded driver is called (functions: FMSTR_Init(), FMSTR_Poll(), 

FMSTR_Recorder()). 

For more about FreeMASTER see [4]  . 

 

Figure 52. LPUART configuration 
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 LPSPI 

LPSPI1 is used as communication interface between S32K344 MCU and analog FET pre-driver 

GD3000. NXP’s Three-Phase Brushless Motor Pre-Driver Software Driver (TPP) uses RTD LPSPI 

driver to establish a communication and to configure GD3000 properly. Included embedded driver 

provides access to all features of GD3000 FETs driver such as writing/reading status registers, dead time 

insertion and fault protection. SPI settings are applied by calling Lpspi_Ip_Init(). LPSPI must be 

initialize before the TPP driver is used (Functions: GD3000_Init(), TPP_GetStatusRegister(), 

TPP_ClearInterrupts()).  

For more information about TPP driver see [11]  . 

 

Figure 53. SPI configuration  

4.3. Software architecture  

4.3.1. Introduction 

This section describes the software design of the Sensorless PMSM Field Oriented Control framework 

application. The application overview and description of software implementation are provided. The aim 

of this chapter is to help in understanding of the designed software. 

4.3.2. Application data flow overview 

The application software is interrupt driven running in real time. There is one periodic interrupt service 

routine associated with the ADC conversion complete interrupt, executing all motor control tasks. This 

includes both fast current and slow speed loop control. All tasks are performed in an order described by 
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the application state machine shown in Figure 56, and application flowcharts shown in Figure 54 and 

Figure 55. 

 

Figure 54. Flow chart diagram of main function with background loop 

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor 

control calculations, the state machine functions are called within a periodic notification function. 

Hence, in order to actually call state machine functions, the peripheral causing this periodic interrupt 

must be properly configured and the interrupt enabled. As described in section S32K344 device 

initialization all peripherals are initially configured and all interrupts are enabled after reset of the 

device. As soon as all S32K344 peripherals are correctly configured, the state machine functions are 

called from the BCTU notification function. The background loop handles non-critical timing tasks, 

such as the FreeMASTER communication polling, GD3000 status pooling and microcontroller 

temperature measurement. 

while(1)

Application peripherals                              
configuration
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FreeMASTER polling 

GD3000 monitoring

MCU temperature monitoring

END

true

false
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Enable real time control 

All peripherals required by the    
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Initial state machine settings

Start time bases;

event = e_init; 
state = init;
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Figure 55. Flow chart diagram of periodic interrupt notification function 

4.3.3. State machine 

The application state machine is implemented using a two-dimensional array of pointers to the functions 

using variable called StateTable[][]. The first parameter describes the current application event, and the 

second parameter describes the actual application state. These two parameters select a particular pointer 

to state machine function, which invokes a function call whenever StateTable[][]() is called. 
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State variable acquisition

Fault detection routine

State machine calling

true

false

event = e_fault
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Figure 56. Application state machine 

The application state machine consists of following six states, which are selected using variable state 

defined as: 

AppStates: 

• INIT - state = 0 

• FAULT - state = 1 

• READY - state = 2 

• CALIB - state = 3 

• ALIGN - state = 4 

• RUN - state = 5  

INIT

READY

CALIB

FAULT

ALIGN

Power on / hw. reset

Application peripherals                              
reset & configuration

e_init

RUN

e_init_done e_app_off

e_app_on

e_app_off e_app_off

e_calib_done

e_align_done

e_aligne_calib

e_ready e_run

e_fault

e_fault

e_fault_clear

e_fault e_fault

e_fault e_fault

/* Enable external interrupts

/* Disable all external interrupts

executed in ISR
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To signalize/initiate a change of state, eleven events are defined, and are selected using variable event 

defined as: 

AppEvents: 

• e_fault - event = 0 

• e_fault_clear - event = 1 

• e_init - event = 2 

• e_init_done - event = 3 

• e_ready - event = 4 

• e_app_on - event = 5 

• e_calib - event = 6 

• e_calib_done - event = 7 

• e_align - event = 8 

• e_align_done - event = 9 

• e_run - event = 10 

• e_app_off - event = 11 

 

 State – FAULT 

Figure 57. FAULT state with transitions 

The application goes immediately to this state when a fault is detected. The system allows all states to 

pass into the FAULT state by setting cntrState.event = e_fault. State FAULT is a state that transitions 

back to itself if the fault is still present in the system and the user does not request clearing of fault flags. 

There are two different variables to signal fault occurrence in the application. The warning register 

tempFaults represents the current state of the fault pin/variable to warn the user that the system is getting 

close to its critical operation. And the fault register permFaults represents a fault flag, which is set and 

put the application immediately to fault state. Even if fault source disappears, the fault remains set until 

manually cleared by the user. Such mechanisms allow for stopping the application and analyzing the 

cause of failure, even if the fault was caused by a short glitch on monitored pins/variables. State FAULT 

can only be left when application variable switchFaultClear is manually set to true (using 

FreeMASTER) or by simultaneously pressing the user buttons (SW5 and SW6) on the S32K344EVB 

evaluation board. That is, the user has acknowledged that the fault source has been removed and the 

application can be restarted. When the user sets switchFaultClear = true; the following sequence is 

automatically executed, see Example 10. 

FAULT

e_fault

e_fault_clear

e_fault
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Example 10. Fault clearing sequence 
 
void StateFault(void) 

{ 
... 
    if (cntrState.usrControl.switchFaultClear) 
   { 
        // Clear permanent and temporary SW faults 
        permFaults.mcu.R           = 0;       // Clear mcu faults 
        permFaults.motor.R  = 0;     // Clear motor faults 
        permFaults.stateMachine.R  = 0;     // Clear state machine faults 
        gd3000Status.B.gd3000ClearErr = true;  // Clear GD3000 faults 
 
        // When all Faults cleared prepare for transition to next state. 
        cntrState.usrControl.readFault             = true; 
        cntrState.usrControl.switchFaultClear      = false; 
        cntrState.event                            = e_fault_clear; 
   } 
} 

 

Setting event to cntrState.event = e_fault_clear while in FAULT state represents a new request to 

proceed to INIT state. This request is purely user action and does not depend on actual fault status. In 

other words, it is up to the user to decide when to set switchFaultClear true. However, according to the 

interrupt data flow diagram shown in Figure 55, function faultDetection() is called before state machine 

function state_table[event][state](). Therefore, all faults will be checked again and if there is any fault 

condition remaining in the system, the respective bits in permFaults and tempFaults variables will be 

set. As a consequence of permFaults not equal to zero, function faultDetection() will modify the 

application event from e_fault_clear back to e_fault, which means jump to fault state when state 

machine function state_table[event][state]() is called. Hence, INIT state will not be entered even though 

the user tried to clear the fault flags using switchFaultClear. When the next state (INIT) is entered, all 

fault bits are cleared, which means no fault is detected (permFaults = 0x0) and application variable 

switchFaultClear is manually set to true. 

The application is scanning for following system warnings and errors: 

• DC bus over voltage 

• DC bus under voltage 

• DC bus over current 

• Phase A and phase B over current  

The thresholds for fault detection can be modified in INIT state. Please see [13]   for further information 

on how to set these thresholds using the MCAT. In addition to previous thresholds, fault state is entered 

if following errors are detected: 

• BCTU trigger faults 

• GD3000 pre-driver errors (overtemperature, desaturation fault, low supply voltage, DC bus 

overcurrent, phase error, framing error, write error after block, existing reset). See [10]   

• FOC Error (irrelevant event call in state machine or eBEMF observer failure) 
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 State – INIT 

 

Figure 58. INIT state with transitions 

State INIT is "one pass" state/function, and can be entered from all states except for READY state, 

provided there are no faults detected. All application state variables are initialized in state INIT.  

 

Figure 59. Flow chart of state INIT 

After the execution of INIT state, the application event is automatically set to 

cntrState.event=e_init_done, and state READY is selected as the next state to enter. 

 State – READY 

 

Figure 60. READY state with transitions 

In READY state, application is waiting for user command to start the motor. The application is released 

from waiting mode by pressing the on board button SW5 or SW6 or by FreeMASTER interface setting 

the variable switchAppOnOff = true (see flow chart in Figure 61).   

 

INIT

e_init

e_init_done e_app_off

Initialization of application variables

e_init

e_init_done

e_app_off

READY 

e_init_done

e_app_one_ready
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Figure 61. Flow chart of state READY 

 State – CALIB 

 

Figure 62. CALIB state with transitions 

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all 

PWM output are enabled. Calibration of the DC offset is achieved by generating 50% duty-cycle on the 

PWM outputs, and taking several measurements of the ADC0 and ADC1 channels connected to the 

current sensors. These measurements are then averaged, and the average value for the channel is stored. 

This value will be subtracted from the measured value when in normal operation. This way the half 

range DC offset, caused by voltage shift of 2.5 V in conditional circuitry (see Figure 5), is removed in 

the measured phase. State CALIB is a state that allows transition back to itself, provided no faults are 

present, the user does not request stop of the application (by switchAppOnOff=true), and the calibration 

process has not finished. The number of samples for averaging is set by macro 

FILTER_SAMPLE_NO_MEAS where actual number of samples is                                                          

2^( FILTER_SAMPLE_NO_MEAS+4) . After all samples have been taken and the averaged values 

successfully saved, the application event is automatically set to cntrState.event=e_calib_done and state 

machine can proceed to state ALIGN (see flow chart in Figure 63). 

state = ready;
event = e_ready;

e_app_off

Fault detection routine 

State variable acquisition 

MEAS_GetUdcVoltage();

MEAS_Get3phCurrent();

faultDetection();

switchAppOnOff

e_app_on

User accessible switch 

for stopping application  

BCTU notification function

Read HW user controls;

event = e_app_off

e_init_done

event =

CALIB 

e_app_on

e_app_off

e_calib_done
e_calib
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Figure 63. Flow chart of state CALIB 

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is 

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling 

edge of switchAppOnOff=false using FreeMASTER. 

 State – ALIGN 

 

Figure 64. ALIGN state with transitions 

This state manages alignment of the rotor and stator flux vectors to mark zero position. When using a 

model based approach for position estimation, the zero position is not known. The zero position is 

obtained at ALIGN state, where two state alignment is used to avoid sticking at 180deg. A DC voltage is 

applied to q-axis voltage for a certain period and after that to d-axis voltage for the rest of the alignment 

time. Ratio between d and q axis alignment time is given by macro ALIGN_D_FACTOR. This causes 

the rotor to rotate to "align" position, where stator and rotor fluxes are aligned. The rotor position in 

which the rotor stabilizes after applying this DC voltage is set as zero position. To get rotor stabilized at 

aligned position, a certain time is selected for alignment process. This time and the amplitude of DC 

voltage used for alignment can be modified by MCAT tool. Timing is implemented using a software 

ALIGN 

e_app_off

e_align_done

e_calib_done

e_align
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counter that counts from a pre-defined value down to zero. During this time, the event remains set to 

cntrState.event=e_align. When the counter reaches zero, the counter is reset back to the pre-defined 

value, and event is automatically set to cntrState.event=e_align_done. This enables a transition to RUN 

state see flow chart in  Figure 65.  

 

Figure 65. Flow chart of state ALIGN 

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is 

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling 

edge of switchAppOnOff=false using FreeMASTER or simultaneously pressing SW5 and SW6. 

state = align;

event = e_align;

e_calib_done

EnableOutput();

uDQReq.fltArg1 = 0;

uDQReq.fltArg2 = alignVoltage;      

thTransform.fltArg1 = GFLIB_Sin(0);

thTransform.fltArg2 = GFLIB_Cos(0);

alignCntr<=0

true

false

GMCLIB_ParkInv(&uAlBeReq,&thTransform,&uDQReq);

SetDutycycle();

ClearVariablesAfterAlign();

Set50%Duty();

svmSector = GMCLIB_SvmStd(&(pwmflt),&uAlBeReqDCB);

alignCntr >

alignCntrInitValue*ALIGN_D_FACTOR

true false

uDQReq.fltArg1 = alignVoltage;

uDQReq.fltArg2 = 0;      

event = e_align_done



Software implementation on the S32K344 

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022 

52  NXP Semiconductors 

   

 State – RUN 

 

Figure 66. RUN state with transitions 

In this state, the FOC algorithm is calculated, as described in section PMSM field oriented control.  

The control is designed such that the drive might be operated in four position modes depending on the 

source of the position information: 

1. Force mode: The FOC control is based on the generated position (so called open loop position), 

also this position is supplied to eBEMF observer in order to initialize its state. 

2. Tracking mode: The FOC control is still using the open loop position, however, the eBEMF 

observer is left on its own, meaning that the observer is using its own estimated position and speed 

one calculation step delayed. 

3. Sensorless mode: FOC control use estimated position and speed from eBEMF observer. 

4. Encoder mode: FOC control uses position and speed obtained from Encoder sensor. This mode 

is available only if ENCODER macro is set to true. 

Position mode can be controlled by pos_mode variable in FreeMASTER interface. It might be modified 

manually or automatically depending on the state of the variable cntrState.usrControl.controlMode. If 

cntrState.usrControl.controlMode = automatic and switchSensor = Sensorless, application automatically 

transits from Force mode (open loop mode) to Sensorless mode (closed loop mode) through Tracking 

mode based on the actual rotor speed and speed limits defined for each position mode (see section Rotor 

position/speed estimation). Variable switchSensor defines whether position/speed feedback comes from 

eBEMF Observer or Encoder sensor. If switchSensor = Encoder, the application uses Encoder mode 

only. The switchSensor is automatically set to Sensorless, if Encoder sensor is not present 

(ENCODER=false). 

RUN

e_app_off

e_align_done

e_run
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Figure 67.  Flow chart of state RUN 

Calculation of fast current loop is executed every BCTU interrupt, while calculation of slow speed loop 

is executed every Nth BCTU interrupt. Arbitration is done using a counter that counts from value N 

down to zero. When zero is reached, the counter is reset back to N and slow speed loop calculation is 

performed. N value (macro SPEED_LOOP_CNTR) is automatically calculated by MCAT form current 

loop sample time and speed loop sample time parameters. This way, only one interrupt is needed for 

both loops and timing of both loops is synchronized. Slow loop calculations are finished before entering 

fast loop calculations (see flow chart in Figure 67).  

Figure 68 shows implementation of FOC algorithm, used functions and variables. As can be seen from 

the diagram, rotor position and speed are estimated by eBEMF observer. This is a default rotor position 

and speed feedback for FOC. To run Encoder based FOC, ENCODER macro must be set to true and PM 

motor provided with this motor control kit replaced by PM motor of the comparable power and equipped 

with Encoder sensor. As mentioned previously, Encoder based FOC can be activated/deactivated by 

setting switchSensor variable to encoder/sensorless. 

A transition from RUN state to FAULT state is performed automatically when a fault occurs. A 

transition to INIT state is performed by setting the event to cntrState.event=e_app_off, which is done 

automatically on falling edge of switchAppOnOff=false using FreeMASTER or keeping user buttons 

SW5 and SW6 pressed. 

state =  run; 
event =  e_run ; 

e_align_done 

CalcOpenLoop (); 
CalcSensorless (); 

ControlModeSelector (); 

speedLoopCntr >= 
SPEED_LOOP_C 

NTR 

true 

false 

SetDutycycle(); 

FocSlowLoop () 

FocFastLoop () 

e_app_off 

AutomaticMode (); 

controlMode 
manual 

automatic 

pos_mode 

case  force: 

case  sensorless : 

case tracking: 

Control.thRotEl =  OpenLoop.thRotEl ; 
Control.wRotEl = 0; 

Force  eBEMF with open loop  speed 
Force  eBEMF with open loop position 

Control.thRotEl =  OpenLoop.thRotEl ; 
Control.wRotEl = 0; 

Control.thRotEl =  pospeSensorless.thRotEl; 
Control.wRotEl =  pospeSensorless.wRotEl; 

case  encoder : 
Control.thRotEl =  pospeEncoder.thRotEl; 
Control.wRotEl =  pospeEncoder.wRotEl; 
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Figure 68. Sensorless and Sensorbased FOC with FW implementation on S32K344 

4.3.4. AMMCLib Integration 

Application software of the FOC Sensorless control with field weakening is built using NXP’s 

Automotive Math and Motor Control Library set (AMMCLib), a precompiled, highly speed-optimized 

off-the-shelf software library designed for motor control applications. The most essential blocks of the 

FOC structure are presented in Figure 68. AMMCLib supports all available data type implementations: 

32-bit fixed-point, 16-bit fixed-point and single precision floating-point. In order to achieve high 

performance of the S32K344 core, floating point arithmetic is used as a reference for this motor control 

application. 

Current Loop function AMCLIB_CurrentLoop unites and optimizes most inner loop of the FOC cascade 

structure Figure 68. It consists of two PI controllers and basic mathematical operations which calculate 

errors between required and feedback currents and limits for PI controllers based on the actual value of 

the DC bus voltage. All functions and data structures are presented in Figure 69.  
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Figure 69. Functions and data structures in AMCLIB_CurrentLoop 

Required d- and q-axis stator currents can be either manually modified or generated by outer loop of the 

cascade structure consisting of: Speed Loop and Field Weakening (FW) as shown in Figure 68. To 

achieve highly optimized level, AMCLIB_FWSpeedLoop merges two functions of the AMMCLIB, 

namely speed control loop AMCLIB_SpeedLoop and field weakening control AMCLIB_FW,       

Figure 70. AMCLIB_SpeedLoop consists of speed PI controller GFLIB_ControllerPIpAW, speed ramp 

GFLIB_Ramp placed in feedforward path and exponential moving average filter GFLIB_FilterMA 

placed in the speed feedback. AMCLIB_FW function is NXP’s patented algorithm (US Patent No. US 

2011/0050152 A1) that extends the speed range of PMSM beyond the base speed by reducing the stator 

magnetic flux linkage as discussed in section Field weakening. All functions and data structures used in 

AMCLIB_FW function are shown in Figure 70. 

 

Figure 70. Functions and data structures in AMCLIB_FWSpeedLoop 

AMCLIB_FW key advantages: 

• Fully utilize the drive capabilities (speed range, load torque) 

• Reduces stator linkage flux only when necessary 

• Supports four quadrant operations 

• The algorithm is very robust - as a result, the PMSM behaves as a separately excited wound field 

synchronous motor drive 

• Allows maximum torque optimal control 

AMCLIB_CurrentLoop

AMCLIB_FW

AMCLIB_SpeedLoop

AMCLIB_FWSpeedLoop



Software implementation on the S32K344 

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022 

56  NXP Semiconductors 

   

eBEMF observer AMCLIB_BemfObsrv and Angle tracking observer AMCLIB_TrackObsrv constitute 

important blocks in this application, Figure 68. They estimate rotor position and speed based on the 

inputs, namely stator voltages uαβ and currents iαβ, Figure 71. AMCLIB_BemfObsrv transforms inputs 

quantities from stationary reference frame α/β to quasi-synchronous reference frame γ/δ that follows the 

real synchronous rotor flux frame d/q with an error θerr. AMCLIB_BemfObsrv algorithm is based on the 

mathematical model of the PMSM motor with excluded BEMF terms eγδ. BEMF terms are estimated as 

disturbances in this model, generated by PI controllers. The estimated BEMF values are used for 

calculating the phase error θerr, which is provided as an output of the BEMF observer. 

To align both frames and provide accurate estimates, this phase error θerr must be driven to zero. This is 

a main role of the Angle tracking observer AMCLIB_TrackObsrv which is attached to function of the 

eBEMF observer AMCLIB_BemfObsrv, Figure 71. AMCLIB_TrackObsrv is an adopted phase-locked-

loop algorithm that estimates rotor speed and position keeping θerr = 0. This is ensured by a loop 

compensator that is PI controller. While PI controller generates estimated rotor speed, integrator used in 

this phase-locked-loop algorithm serves estimated rotor position.  

 

Figure 71. Structure of the AMCLIB_BemfObsrv and AMCLIB_TrackObsrv 

More details related to AMMCLib FOC functions can be found in S32K34x AMMCLib User's Guide on 

standard installation path 

C:\NXP\AMMCLIB\S32K3xx_AMMCLIB_vX.Y.Z\doc\S32K3XXMCLUG.pdf.  Parameters of the PI 

controllers placed in the speed control loop, current control loop, eBEMF and Angle tracking observer 

can be tuned by using NXP’s Motor Control Application Tuning tool (MCAT). Detailed instructions on 

how to tune parameters of the FOC structure by MCAT are presented in [14]  , [15]  . 

4.3.5. MCAT Integration 

MCAT (Motor Control Application Tuning) is a graphical tool dedicated to motor control developers 

and the operators of modern electrical drives. The main feature of proposed approach is automatic 

calculation and real-time tuning of selected control structure parameters. Connecting and tuning new 

electric drive setup becomes easier because the MCAT tool offers a possibility to split the control 

structure and consequently to control the motor at various levels of cascade control structure. 

The MCAT tool runs under FreeMASTER online monitor, which allows the real-time tuning of the 

motor control application. Respecting the parameters of the controlled drive, the correct values of 

control structure parameters are calculated, which can be directly updated to the application or stored in 

AMCLIB_TrackObsrvAMCLIB_BemfObsrv

GFLIB_IntegratorTR

GFLIB_ControllerPIrAW
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an application static configuration file. The electrical subsystems are modeled using physical laws and 

parameters of the PI controllers are determined using Pole-placement method. FreeMASTER MCAT 

control and tuning is described in the section FreeMASTER and MCAT user interface. 

The MCAT tool generates a set of constants to the dedicated header file (for example “{Project 

Location}\src\config\PMSM_appconfig.h”). The names of the constants can be redefined within the 

MCAT configuration file “Header_file_constant_list.xml” (“{Project Location}\FreeMASTER_control\ 

MCAT\src\xml_files\”). The PMSM_appconfig.h contains application scales, fault triggers, control 

loops parameters, speed sensor and/or observer settings and FreeMASTER scales. The 

PMSM_appconfig.h should be linked to the project and the constants should be used for the variables 

initialization. 

The FreeMASTER enables an online tuning of the control variables using MCAT control and tuning 

view. However, the FreeMASTER must be aware of the used control-loop variables. A set of the names 

is stored in “FM_params_list.xml” (“{Project Location}\FreeMASTER_control\MCAT\src\xml_files\”). 

5. FreeMASTER and MCAT user interface 

The FreeMASTER debugging tool is used to control the application and monitor variables during run 

time. Communication with the host PC passes via USB. However, because FreeMASTER supports 

serial port communication, there must be a driver for the physical USB interface, OpenSDA, installed on 

the host PC that creates a virtual COM port from the USB. The driver shall be installed automatically 

plugging S32K344EVB to USB port. The application configures the LPUART module of the S32K344 

for a communication speed of 115200bps. Therefore, the FreeMASTER user interface also needs to be 

configured respectively. 
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Figure 72. FreeMASTER and Motor Control Application Tunning Tool 

5.1. MCAT Settings and Tuning 

5.1.1. Application configuration and tuning 

FreeMASTER and MCAT interface (Figure 72) enables online application tuning and control. The 

MCAT tuning shall be used before the very first run of the drive to generate the configuration header file 

(PMSM_appconfig.h). Most of the variables are accessible via MCAT online tuning (thus can be 

updated anytime). They are highlighted when mouse pointer is over the button “Update Target” (see 

Figure 73). Some parameters (especially the fault limit thresholds) must be set using the configuration 

header file generation, which can be done on the “Output File” panel by clicking the “Generate 

Configuration File” (see Figure 74). 

 

MCAT Control Page with 
panels, and settings 
(hidden mouse-over 

button) 

 

Project panel with sub-
blocks, oscilloscopes and 

recorders 

 

Variable Watch 
panel 
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Figure 73. Parameters for online tunning 

 

 

Figure 74. Output  i    a    a   “     a      fig  a i    i  ” b      

Parameters runtime update is done using the “Update Target” button (see Figure 75). Changes can be 

also saved using “Store Data” button, or reloaded to previously saved configuration using “Reload Data” 

button. Only stored configuration can be generated to PMSM_appconfig.h  header file. File holding the 

configuration is “{Project Location}\FreeMASTER_control\ MCAT\param_files\M1_params.txt”. 

Settings for various motors, scenarios can be backed up and selected setting can be loaded by replacing 

the content of M1_params.txt. 

 

Generate 
Configuration File 

button 

 

Parameters for 
online tunning 
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Any change of parameters highlights the cells that have not been saved using “Store data”. Changes can 

be reverted using “Reload Data” to previously saved configuration. This button is disabled if no change 

has been made. 

NOTE 

MCAT tool can be configured using hidden mouse-over “Settings” button 

(see Figure 72), where a set of advanced settings, for example PI 

controller types, speed sensors and other blocks of the control structure 

can be changed. However, it is not recommended to change these settings 

since it will force the MCAT to look for a different variables names and to 

generate different set of constants than the application is designed for. See 

MCAT tool documentation available at nxp.com. 

The application tuning is provided by a set of MCAT pages dedicated to every part of the control 

structure. An example of the Application Parameters Tuning page is in Figure 75. Following list of 

settings pages is based on the PMSM sensorless application. 

 

• Parameters 

o Motor Parameters 

o Hardware Scales 

o SW Fault Triggers 

o Application Scales 

o Alignment 

• Current Loop 

o Loop Parameters 

o D axis PI Controller 

o Q axis PI Controller 

o Current PI Controller Limits 

o DC-bus voltage IIR filter settings 

• Speed Loop 

o Loop Parameters 

o Speed PI Controller Constants 

o Speed Ramp 

o Speed Ramp Constants 

o Actual Speed Filter 

o Speed PI Controller Limits 

• Sensorless 

o BEMF Observer Parameters 

o BEMF DQ Observer Coefficients 

o Tracking Observer PI Constants 

o Tracking Observer Integrator 

o Open Loop Start-up Parameters 

o BEMF DQ Observer PI Controller 

Constants 

Changes can be tested using MCAT “Control Struc” page (Figure 76), where the following control 

structures can be enabled: 

• Scalar Control 

• Voltage FOC (Position and Speed Feedback is enabled automatically) 

• Current FOC (Position and Speed Feedback is enabled automatically) 

• Speed FOC (Position and Speed Feedback is enabled automatically) 
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Figure 75. MCAT input application parameters page 

 

Figure 76. MCAT application control structure page 
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5.2. MCAT application Control 

All application state machine variables can be seen on the FreeMASTER MCAT App control page as 

shown in Figure 77. Warnings and faults are signaled by a highlighted red color bar with name of the 

fault source. The warnings are signaled by a round LED-like indicator, which is placed next to the bar 

with the name of the fault source. The status of any fault is signaled by highlighting respective 

indicators. In Figure 77, for example, there is pending fault flag and one warning indicated ("Udcb LO" 

- DC bus voltage is close to its under voltage conditions). That means that the measured voltage on the 

DC bus exceeds the limit set in the MCAT_Init function. The warning indicator is still on if the voltage 

is higher than the warning limit set in INIT state. In this case, the application state FAULT is selected, 

which is shown by a frame indicator hovering above FAULT state. After all actual fault sources have 

been removed, no warning indicators are highlighted, but the fault indicators will remain highlighted. 

The pending faults can now be cleared by pressing the "FAULT" button. This will clear all pending 

faults and will enable transition of the state machine into INIT and then READY state. After the 

application faults have been cleared and the application is in READY state, all variables should be set to 

their default values. The application can be started by application On/Off switch. Successful selection is 

indicated by highlighting the On/Off button in green. Required speed can be set by clicking on speed 

gauge or by modifying FreeMASTER variable ” Speed Required”. 

 

 

Figure 77. FreeMASTER MCAT Control Page for controlling the application 
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6. Conclusion 

Design, described in this application note shows the simplicity and efficiency in using the S32K344 

microcontroller for Sensorless PMSM motor control and introduces it as an appropriate candidate for 

various applications in the automotive area. MCAT tool provides interactive online tool which makes 

the PMSM drive application tuning friendly and intuitive.  
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