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1.Introduction

This application note describes the design of a 3-phase
Permanent Magnet Synchronous Motor (PMSM) vector
control (Field Oriented Control - FOC) drive with 2-
shunt current sensing with and without position sensor.

This design serves as an example of motor control
design using NXP S32K3 automotive family with
MCUs based on a 32-bit Arm® Cortex-M7® core with
IEEE-754 compliant single precision floating point unit
optimized for a full range of automotive applications.
An innovative drivers set, Real-Time Drivers (RTD),
are used to configure and control the MCU. It complies
with Automotive-SPICE, ISO 26262, 1ISO 9001 and
IATF 16949. Low-level drivers of RTD and S32 Design
Studio Configuration Tools (S32CT) are used to
demonstrate non-AUTOSAR approach.

Following are the supported features:
e 3-phase PMSM speed Field Oriented Control
e Current sensing with two shunt resistors

e Shaft position and speed estimated by sensorless
algorithm or encoder position sensor

e Application control user interface using
FreeMASTER debugging tool

e Motor Control Application Tuning (MCAT) tool
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System concept

2. System concept

The system is designed to drive a 3-phase PMSM. The application meets the following specifications:

« Based on the S32K3x4-Q172 development board for general-purpose industrial and automotive
applications. See [1] for more information.

« DEVKIT-MOTORGD containing GD3000 MOSFETSs pre-driver with extensive set of functions
and condition monitoring (see [9] [10] )

« Real-Time Drivers (RTD) and S32CT (non-AUTOSAR) used as S32K44 device configuration
and control tool being a part of the S32 Design Studio for S32 Platform (S32DS) a NXP’s
complimentary integrated development environment (IDE) (see PMSM field oriented control)

« Control technique incorporating:
o Field Oriented Control of 3-phase PM synchronous motor without position sensor
o Closed-loop speed control with action period of 1ms
o Closed-loop current control with action period of 100us
o Bi-directional rotation
o Flux and torque independent control
o Field weakening control extending speed range of the PMSM beyond the base speed

o Position and speed is estimated by Extended Back Electromotive Force (eBEMF)
observer or obtained by Encoder sensor

o Open-loop start up with two stage alignment
o Reconstruction of three-phase motor currents from two shunt resistors
o FOC state variables sampled with 100 us period

« Automotive Math and Motor Control Library (AMMCLIB) - FOC algorithm built on blocks of
precompiled SW library (see [5] )

. FreeMASTER software control interface (motor start/stop, speed setup) (see [4] )
. FreeMASTER software monitor (monitoring/visualization of application variables)

« FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters,
current loop, sensorless parameters, speed loop) (see [13] )

. FreeMASTER software MCAT graphical control page (required speed, actual motor speed,
start/stop status, DC-Bus voltage level, motor current and system status)

. FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and
motor current)

. FreeMASTER software high-speed recorder (reconstructed motor currents, vector control and
algorithm quantities)

. DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection
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PMSM field oriented control

3. PMSM field oriented control

3.1. Fundamental principle of PMSM FOC

High-performance motor control is characterized by smooth rotation over the entire speed range of the
motor, full torque control at zero speed, and fast acceleration/deceleration. To achieve such control,
Field Oriented Control is used for PM synchronous motors.

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a
high control dynamic. Analogous to standard DC machines, AC machines develop maximal torque
when the armature current vector is perpendicular to the flux linkage vector. Thus, if only the
fundamental harmonic of stator magnetomotive force is considered, the torque T developed by an AC
machine, in vector notation, is given by the following equation:

3 —
T, = E'pp'wsXLs

Equation 1

Where pp is the number of motor pole-pairs, is is stator current vector and s represents vector of the
stator flux. Constant 3/2 indicates a non-power invariant transformation form.

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator
current vector is satisfied by the mechanical commutator. As there is no such mechanical commutator in
AC Permanent Magnet Synchronous Machines (PMSM), the functionality of the commutator has to be
substituted electrically by enhanced current control. This reveals that stator current vector should be
oriented in such a way that the component necessary for magnetizing of the machine (flux component)
shall be isolated from the torque producing component.

This can be accomplished by decomposing the current vector into two components projected in the
reference frame, often called the dg frame that rotates synchronously with the rotor. It has become a
standard to position the dqg reference frame such that the d-axis is aligned with the position of the rotor
flux vector, so that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The
reference frame position must be updated so that the d-axis should be always aligned with the rotor flux
axis.

The rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical position
transducer or position observer can be utilized to measure the rotor position and the position of the rotor
flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor flux axis,
the current in the g-axis represents solely the torque producing current component.

Setting the reference frame speed synchronously with the rotor flux axis further results into d and q axis
current components appearing as DC values. This implies utilization of simple current controllers to
control the demanded torque and magnetizing flux of the machine, thus simplifying the control structure
design.

Figure 1 shows the basic structure of the vector control algorithm for the PM synchronous motor. To
perform vector control, it is necessary to perform the following four steps:
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PMSM field oriented control

1. Measure the motor quantities (DC link voltage and currents, rotor position/speed).

2. Transform measured currents into the two-phase orthogonal system (a, ) using a Clarke
transformation. After that transform the currents in a, B coordinates into the d, q reference frame
using a Park transformation.

3. The stator current torque (isq) and flux (isq) producing components are separately controlled in d,
q rotating frame.

4. The output of the control is stator voltage space vector and it is transformed by an inverse Park
transformation back from the d, g reference frame into the two-phase orthogonal system fixed
with the stator. The output three-phase voltage is generated using a space vector modulation.

Clarke/Park transformations discussed above are part of the Automotive Math and Motor Control
Library set (see [5] ).

To decompose currents into torque and flux producing components (isq, isq), position of the motor-
magnetizing flux has to be known. This requires knowledge of accurate rotor position as being strictly
fixed with magnetic flux. This document deals with the FOC control where the position and velocity is
obtained by either a position/velocity estimator or incremental Encoder sensor.
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Figure 1. Field oriented control transformations

3.2. PMSM model in quadrature phase synchronous reference frame

Quadrature phase model in synchronous reference frame is very popular for field oriented control
structures, because both controllable quantities, current and voltage, are DC values. This allows to
employ only simple controllers to force the machine currents into the defined states. Furthermore, full
decoupling of the machine flux and torque can be achieved, which allows dynamic torque, speed and
position control.

The equations describing voltages in the three phase windings of a permanent magnet synchronous
machine can be written in matrix form as follows:

Uq lg Eba
Up| = R |1 + —
b dt Yy
Uc lc ¢c
Equation 2

where the total linkage flux in each phase is given as:
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PMSM field oriented control
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where Laa, Lo, Lcc, are stator phase self-inductances and Lab=Lba, Loc=Lcb, Lca=Lac are mutual
inductances between respective stator phases. The term ¥pm represents the magnetic flux generated by
the rotor permanent magnets, and e is electrical rotor angle.
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Figure 2. Orientation of stator (stationary) and rotor (rotational) reference frames, with current
components transformed into both frames

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by
transforming the three phase voltage equations (Equation 2) and flux equations (Equation 3) into a two
phase rotational frame which is aligned and rotates synchronously with the rotor as shown in Figure 2.
Such transformation, after some mathematical corrections, yields the following set of equations:

Ug _ id Ld 01d id 0 —Lq id 0
ug| = Rs [iq] * [0 Lq]a [iq] T [Ld 0 ] [iq] +wepu |
Equation 4

where we is electrical rotor speed. The Equation 4 represents a non-linear cross dependent system, with
cross-coupling terms in both d and g axis and BEMF voltage component in the g-axis. When FOC
concept is employed, both cross-coupling terms shall be compensated in order to allow independent
control of current d and g components. Design of the controllers is then governed by following pair of
equations, derived from Equation 4 after compensation:
Reig + Ly e
Ug = l —_—
d std d dt

Equation 5
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di,
T dt
Equation 6

Ug = Rsig + L

This equation describes the model of the plant for d and g current loop. Both equations are structurally
identical, therefore the same approach of controller design can be adopted for both d and g controllers.
The only difference is in values of d and q axis inductances, which results in different gains of the
controllers. Considering closed loop feedback control of a plant model as in either equation, using
standard PI controllers, then the controller proportional and integral gains can be derived, using a pole-
placement method, as follows:

K, = 2§woL — R

Equation 7

Ki = (DOZL
Equation 8

where wo represents the system natural frequency [rad/sec] and £ is the Damping factor [-] of the current
control loop.
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Figure 3. FOC Control Structure

3.3. Phase current measurement and output voltage actuation

The 3-phase voltage source inverter shown in Figure 4 uses three shunt resistors (R56, R57, R58) placed
in three legs of the inverter as phase current sensors. Stator phase current which flows through the shunt
resistor produces a voltage drop which is interfaced to the Analog-to-Digital Converter (ADC) of
microcontroller through conditional circuitry. Shunt resistor R60 is used as DC current sensor. Voltage
drop is interfaced to GD3000 pre-driver internal operational amplifier and pre-driver is using it to detect
an overcurrent event. (refer to DEVKIT-MOTORGD Schematic available at [9] ).
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Figure 4. 3-phase DC/AC inverter with shunt resistors for current measurement

The following figure shows a gain setup and input signal filtering circuit for operational amplifier which
provides the conditional circuitry and adjusts voltages to fit into the ADC input voltage range.
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Figure 5. Phase current measurement conditional circuitry

The phase current sampling technique is a challenging task for detection of phase current differences
and for acquiring full three phase information of stator current by its reconstruction. Phase currents
flowing through shunt resistors produces a voltage drop which needs to be appropriately sampled by the
ADC when low-side transistors are switched on. The current cannot be measured by the current shunt
resistors at an arbitrary moment. This is because the current only flows through the shunt resistor when
the bottom transistor of the respective inverter leg is switched on. Therefore, considering Figure 4,
phase A current is measured using the R56 shunt resistor and can only be sampled when the low side
transistor Q2 is switched on. Correspondingly, the current in phase B can only be measured if the low
side transistor Q3 is switched on, and the current in phase C can only be measured if the low side
transistor Q4 is switched on. To get an actual instant of current sensing, transistor switching
combination needs to be known.

Generated duty cycles (phase A, phase B, phase C) of two different PWM periods are shown in Figure
6. These phase voltage waveforms correspond to a center-aligned PWM with sine-wave modulation. As
shown in the following figure, (PWM period 1), the best sampling instant of phase current is in the
middle of the PWM period, where all bottom transistors are switched on. However, not all three currents
can be measured at an arbitrary voltage shape. PWM period I1 in the following figure shows the case
when the bottom transistor of phase A is ON for a very short time. If the ON time is shorter than a
certain critical time (depends on hardware design), the current cannot be correctly measured.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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Figure 6. Generated phase duty cycles in different PWM periods

In standard motor operation, where the supplied voltage is generated using the space vector modulation,
the sampling instant of phase current takes place in the middle of the PWM period in which all bottom
transistors are switched on. If the duty cycle goes to 100%, there is an instant when one of the bottom
transistors is switched on for a very short time period. Therefore, only two currents are measured and the
third one is calculated from equation:

iA + iB + iC = O
Equation 9

NOTE

Although, there are three shunt resistors available on the power stage
board (R56, R57, R58) and S32K344 has three AD converters, only two
currents are measured simultaneously in this application in order to
demonstrate ADC Single-shot mode and BCTU control mode in parallel.
Third stator current is calculated based on Equation 9. To measure two
stator currents in two inverter legs correctly, minimum ON times for the
low-side switches are ensured by appropriate duty cycle limit.

3.4. Rotor position/speed estimation

In this application, rotor position and speed are either estimated sensorless by eBEMF observer or
obtained by Encoder sensor. eBEMF observer as well as incremental Encoder sensor provide only
relative position. To get absolute position, initial position must be known. This application uses
mechanical rotor alignment when the rotor is moved from unknown to known position. The two stage
alignment process is described in details in the section State — ALIGN.

Application in Sensorless mode must start with open loop start-up sequence to move the motor up to a
speed value where the observer provides sufficiently accurate speed and position estimations. As soon as
the observer provides appropriate estimates, application transits to closed-loop mode, when the rotor
speed and position calculation is based on the estimation of a eBEMF in the stationary reference frame
using a Luenberger type of observer. eEBEMF observer is a part of the NXP’s Automotive Math and
Motor Control library.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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PMSM field oriented control

Application in encoder mode can start from zero speed because speed and position are provided by
sensor.

Structure and implementation details are discussed in section AMMCLIb Integration.

3.5. Field weakening

Field weakening is an advanced control approach that extends standard FOC to allow electric motor
operation beyond base speed. The back electromotive force (BEMF) is proportional to the rotor speed
and counteracts the motor supply voltage. If a given speed is to be reached, the terminal voltage must be
increased to match the increased stator BEMF. A sufficient voltage is available from the inverter in the
operation up to the base speed. Beyond the base speed, motor voltages us and uq are limited and cannot
be increased because of the ceiling voltage given by inverter. Base speed defines the rotor speed at
which the BEMF reaches maximal value and motor still produces the maximal torque.

As the difference between the induced BEMF and the supply voltage decreases, the phase current flow
is limited, hence the currents iq and iq cannot be controlled sufficiently. Further increase of speed would
eventually result in BEMF voltage equal to the limited stator voltage, which means a complete loss of
current control. The only way to retain the current control even beyond the base speed is to lower the
generated BEMF by weakening the flux that links the stator winding. Base speed splits the whole speed
motor operation into two regions: constant torque and constant power, see Figure 7.

A Constant Torque region Constant Power region

Mechanical power Prech=Pmax

Torque
~

- *
Prech = Te*Om

Base speed Speed g
Figure 7. Constant torque/power operating regions

Operation in constant torque region means that maximal torque can be constantly developed while the
output power increases with the rotor speed. The phase voltage increases linearly with the speed and the
current is controlled to its reference. The operation in constant power region is characterized by a rapid
decrease in developed torque while the output power remains constant. The phase voltage is at its limit
while the stator flux decreases proportionally with the rotor speed, see Figure 8.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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Figure 8. Constant flux/voltage operational regions

FOC splits phase currents into the g-axis torque component and d-axis flux component. The flux current
component lq is used to weaken the stator magnetic flux linkage ¥s. Reduced stator flux ¥s yields to
lower BEMF and condition of Field Weakening is met. More details can be seen from the following
phasor diagrams of the PMSM motor operated exposing FOC control without (left) and with FW (right),
as shown in the following figure.
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Figure 9. Steady-state phasor diagram of PMSM operation up to base speed (left) and above speed (right)

FOC without FW is operated demanding d-axis current component to be zero (14=0) to excite electric
machine just by permanent magnets mounted on the rotor. This is an operation within constant torque
region (see Figure 7), since whole amount of the stator current consists of the torque producing
component Iq only (see Figure 9 left). Stator magnetic flux linkage ¥s: is composed of rotor magnetic
flux linkage ¥pm, which represents the major contribution and small amount of the magnetic flux
linkage in g-axis Lqlq produced by g-axis current component lq. Based on the Faraday’s law, rotor
magnetic flux linkage ¥pm and stator magnetic flux linkage ¥s; produce BEMF voltage Epmi=we1 Prm
perpendicularly oriented to rotor magnetic flux ¥pwm in g-axis and BEMF voltage Esi=we1 ¥s1
perpendicularly oriented to stator magnetic flux ¥si, respectively (see Figure 9 left). Both voltages are
directly proportional to the rotor speed we1. If the rotor speed exceeds the base speed, the BEMF voltage
Esi=we1¥s1 approaches the limit given by VSI and Iq current cannot be controlled. Hence, field
weakening has to take place.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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In FW operation, lg current is controlled to negative values to “weaken” stator flux linkage s> by -Lald
component as shown in Figure 9 right. Thanks to this field weakening approach, BEMF voltage induced
in the stator windings Esz is reduced below the VSI voltage capability even though Epwm2 exceeds it. Iq
current can be controlled again to develop torque as demanded. Unlike the previous case, this is an
operation within constant power region (see Figure 7), where Iq current is limited due to Is current vector
size limitation (see Figure 9 right). In FW operation, stator magnetic flux linkage ¥s consists of three
components now: rotor magnetic flux linkage ¥rm, magnetic flux linkage in g-axis ¥4= Lqlq produced by
g-axis current component Iq and magnetic flux linkage in d-axis ¥4= -Lalq produced by negative d-axis lq
current component that counteracts to ¥pw.

There are some limiting factors that must be taken into account when operating FOC control with field
weakening:

* Voltage amplitude u_max is limited by power as shown in Figure 10 left

» Phase current amplitude i_max is limited by capabilities of power devices and motor thermal
design as shown in Figure 10 right

* Flux linkage in d-axis is limited to prevent demagnetization of the permanent magnets

q

| q_limit

d

U max i_max

Figure 10. Voltage (left) and current (right) limits for PMSM drive operation

NXP’s Automotive Math and Motor Control library offers a software solution for the FOC with field
weakening respecting all limitations discussed above. This library based function is discussed in section
AMMCLIb Integration.

4. Software implementation on the S32K344

4.1. S32K344 — Key modules for PMSM FOC control

The S32K344 device includes modules such as the Enhanced Modular 10 Subsystem (eMIOS), Logic
Control Unit (LCU), Trigger MUX (TRGMUX), Body Cross-triggering Unit (BCTU) and Analogue-to-
Digital Converter (ADC) suitable for real-time control applications, in particular, motor control
applications. These modules are directly interconnected and can be configured to meet various motor
control application requirements. Figure 11 shows a module interconnection for a typical PMSM FOC
application working in sensorless or sensor-based mode using dual shunt current sensing and encoder
position sensor. The modules are described below and the detailed description can be found in the
S32K3xx Reference Manual (see [7] ).

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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4.1.1. Module interconnection

The modules involved in output actuation, data acquisition and synchronization of actuation and
acquisition, form the so-called Control Loop. This control loop consists of the eMIOS, LCU, TRGMUX,
BCTU and ADC modules. The control loop is a modular concept and is very flexible in operation and
can support static, dynamic or asynchronous timing.

eMIQS plays a role of the real time timer/counter. Within the control loop it is responsible for
generation of PWM signal (period, duty cycle), generation of the trigger for analogue data capturing in
the precise moment or counting edges of encoder signal. LCU enriches this modular concept with
advance features. In PWM generation it is responsible for creation of PWM complementary pairs, dead
time insertion, disabling/enabling PWM outputs or it preprocess signals from an encoder sensor to get
quadrature decoder functionality.

BCTU and ADC modules are responsible for analog data capturing. BCTU answers question “what is
going to be measured?” by a predefined list of ADC channels. The ADC answers question “How it is
going to be measured? ” by setting a conversion resolution, sampling duration etc.

eMIOS and LCU are connected through TRGMUX unit which is responsible for a configurable signal
interconnection within the microcontroller. The eMIOS channels CH1-CH3 create 3-phase center
aligned PWM signal and share PWM time base CHO. The center aligned PWM is formed using flexible
Output Pulse Width Modulation Buffered (OPWMB) eMIOS mode where each channel uses two
compare registers (A, B) to control rising and falling edge independently. LCU OUTO0-OUTS5 create
commentary PWM pairs to control particular MOSFET transistors. The LCU uses true tables, output
polarity control and configurable digital filters to generate control signals for transistors with inserted
deadtime. The eMIOS CH4 is dedicated for trigger functionality. Same as in case of PWM signals
OPWMB mode is also used for trigger. The CH4 is linked with trigger time base CH23. Time bases
CHO and CH23 are synchronized, what offers possibility of an independent configuration of sampling
and PWM frequency.

BCTU is linked with eMIOS channels through the channel flag. When the flag is set, BCTU starts to
execute conversions according to the list of conversions and clears the flag back. BCTU is capable of
controlling all three ADCs, so list of single or parallel conversions can be invoked. In this example a list
of parallel conversions of ADCO and ADC1 is used to obtain phase currents and DC-bus voltage.
Conversion results are stored to BCTU FIFO. ADC2 is used for microcontroller temperature
measurement to demonstrate non real time background measurement.

Quadrature decoder functionality is achieved by cooperation of eMIOS, LCU and TRGMUX. LCU
decodes encoder signals PHA and PHB into digital signals, which carry captured edges per particular
rotor direction. The eMIOS module works as a counter and holds captured edges for clockwise CH5 and
counter clockwise CHG6 direction. Absolute position is obtained by subtracting counters values.

Detailed description can be found in the S32K3xx Reference Manual (see [7] ).
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Figure 11. S32K344 module interconnection

4.1.2. S32K344 and FETs pre-driver interconnection

Excitation of power FETSs is ensured by NXP GD3000 pre-driver. This analog device is equipped with
charge pump that ensures external FETSs drive at low power supply voltages. Moreover, three external
bootstrap capacitors provide gate charge to the high-side FETs (see [9] [10] ). NXP’s Three-Phase
Brushless Motor Pre-Driver Software Driver (TPP) is used to control and to configure GD3000.

Configuration of GD3000 pre-driver is realized via LPSPI1 module. The GD3000 allows different
operating modes to be set and locked by SPI commands. SPI commands also report condition of the
GD3000 based on the internal monitoring circuits and fault detection logic. S32K344 detects fault state
of the GD3000 by means of interrupt signal on PTC7 pin. Integrated current sensing amplifier with
analog comparator allow to measure DC bus current and detect overcurrent. Interconnection between
S32K344 and GD3000 is briefly depicted in Figure 11.

4.1.3. Module involvement in digital PMSM FOC control loop

This section will discuss timing and modules synchronization to accomplish PMSM FOC on the
S32K344 and the internal hardware features.
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The time diagram of the automatic synchronization between PWM and ADC in the PMSM application
is shown in Figure 12.

The PMSM FOC control with dual-shunt current measurement is based on static timing. It means the
trigger point of the ADC conversions is located at same place within every control loop cycle. This
trigger point is also configurable during runtime.

eMIOS timer uses the concept of time bases for signal synchronization. There are 5 channels (CHO,
CH8, CH16, CH22 and CH23) which can act as the time base what means that other channels can see
value of their counter through the bus. CHO,CH8,CH16 can create local time bases for 7 channels and
CH22 and CH23 can create a global time bases for any channel. In the example CHO creates the PWM
time base for channels CH1,CH2 and CH3 which are responsible for PWM signal generation. The CH23
creates a TRIGGER time base for CH4 which is responsible for triggering BCTU. Both time bases
operate in Modulus Counter Buffered (MCB) up counting mode, where period is set by register A. It is
possible to start time bases synchronously by enabling eMIOS global prescaler. Offset between time
bases is given by time base channel initial counter value. In this example time bases are synchronous
with no offset.

PWM frequency is 20 kHz and sampling frequency is 10 kHz. PWM channels and trigger channels
operates in OPWMB mode. Channel output signal is formed by comparing channel registers A and B
with time base counter. For example PWM signal for phase A is generated by output of the CH1. Center
aligned PWM is achieved by proper setting of registers A and B. PWM A signal is routed to LCU where
complementary signals for particular MOSFETSs are created (LCUO OUTO and OUT1) respecting pre-
driver input polarity and the dead time is inserted.

Trigger signal CH4 is formed in the same way as PWM signals. An important point here is that the
connection between BCTU and CH4 is through the CH4 flag and not through the CH4 output. Flag can
be generated on both compares or on compare with register B only. In this example, the flag is set on
register B only it means on falling edge of the CH4 output signal. CH4 output signal can be routed using
the TRGMUX to microcontroller pin for trigger debugging.

When flag of eMIOS CH4 is set, the BCTU starts list of conversions controlling ADC0 and ADC1 and
also clears back the CH4 flag. Irna and lpng Stator currents are measured simultaneously at the beginning
of PWM cycle, which is in the middle of non-active vector, where bottom MOSFETSs of both inverter
legs are open, and currents flow through shunt resistors. DC-bus voltage Upchus IS measured in the
following sample. The ADC results are stored into BCTU FIFO result registers and interrupt is raised on
watermark event. FOC control algorithm calculates new duty-cycle values based on measured currents
and DC-bus voltage and updates eMIOS channels CH1, CH2, CH3. Register A and B are double-
buffered so change will be coherently propagated on channels time base reload.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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Figure 12. Time Diagram of PWM and ADC Synchronization

4.2. S32K344 device initialization

To simplify and accelerate an application development, embedded part of the PMSM FOC motor control
application has been created using S32 Design studio, RTD drivers (low level part) and S32K344 is
configured using S32 Configuration Tools, see the following figure.

Pins Clocks Peripherals

— B &= Outline =
Figure 13. Config tools

Figure 14 describes the example project structure in the S32 Design Studio. Current settings of Config
tools are stored in MCSPTE1LAK344_PMSM_FOC_2Sh_Il.mex file and generated files by config tools
(all configuration structures) can be found in folders board and generate. When a component is added
using the config tool, its SW driver is copied into folder RTD so only used drivers are part of the project.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022

NXP Semiconductors 15



Software implementation on the S32K344
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Figure 14. Example project structure

Peripherals are initialized at beginning of the main() function. For each S32K344 module, there is a

specific initialization function, that uses configuration structures generated by Config tools to configure

the MCU. XXX_Init functions must be called before any other Application Programming Interface

(API) from the module. It is important to initialize Clock and OslIf at first. Oslf initializes systic timer

which can be used for timeout measurements in other modules. The last function to call during the
initialization process is Emios_Mecl_Ip_Init. It initializes time bases and enables their counters what
initiate control cycle.

List of the initialization APIs:

Clock_Ip_Init() - Initializes MCU clock configuration

Oslf_Init() - Initializes the OS interface (basic timing/Os services for drivers)
IntCtrl_Ip_Init() - Initializes the configured interrupts
IntCtrl_Ip_ConfiglrgRouting() - Initializes interrupt handlers
Siul2_Port_Ip_Init() - Initializes PINs and PORT configuration
Trgmux_Ip_Init() - Initializes TRGMUX module configuration
Lpuart_Uart_Ip_Init() - Initializes LPUART module configuration
Adc_Sar_Ip_Init() - Initializes ADC modules configuration

Lcu_lp_Init() - Initializes LCU module configuration

Lpspi_Ip_Init() - Initializes LPSPI module configuration

Siul2_lcu_lp_Init() - Initializes input capture configuration for External Interrupt Request

(EIRQ)

Emios_Pwm_Ip_InitChannel() - Initializes emios PWM and Trigger channels configuration
Emios_Icu_Ip_Init() - Initializes eMios input capture configuration
Betu_Ip_Init() - Initializes BCTU module configuration

Emios_Mcl_Ip_Init() - Initializes eMios time-bases configuration

RTD documentation can be found in the folder created in the S32 Design Studio installation path:

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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4.2.1. Port control and pin configuration

Software implementation on the S32K344

PMSM FOC sensorless motor control application requires following on chip pins assignment:

Table 1. Pins assignment for S32K344 PMSM Sensorless FOC control
Module Signal name Pin name / Description
Functionality
PWMA_HS PTD2/LCUO_OUT1 PWAM signal for phase A high-side driver (inverted)
PWMA_LS PTD3/LCUO_OUTO PWM signal for phase A low-side driver
LCUO PWMB_HS PTA2 /LCUO_OUT3 PWM signal for phase B high-gide driver (inverted)
PWMB_LS PTA3/LCUO_OUT2 PWM signal for phase B low-side driver
PWMC _HS PTA1/LCUO_OUT5 PWM signal for phase C high-side driver (inverted)
PWMC LS PTAO0/LCUO OUT4 PWM signal for phase C low-side driver
ADCO DCB_V PTDO / ADCO_P1 DC bus voltage measurement
PHB | PTA8 / ADCO P2 Phase B stator current measurement
ADC1 PHA | PTA13/ADC1 P1 Phase A stator current measurement
GD3000_CLK PTB14 /LPSPI1_SCK SPI clock (1IMHz)
LPSPI1 GD3000_SIN PTB15/LPSPI1_SIN SPl input data from GD3000
GD3000 SOUT PTB16 /LPSPI1 SOUT | SPI output data for GD3000
LPUART6 FMSTR_TX PTA16 / LPUART6_RX UART tran§mit data (FreeMASTER)
FMSTR RX PTA15/LPUART6 TX UART receive data (FreeMASTER)
TST_TGMX 012 B21 | PTB21/ Pin for debugging microcontroller internal signals
TRGMUX_OUT12
TRGMUX TST_TGMX_09_B18 'IP';zT\jIgLﬁX_OUTQ Pin for debugging microcontroller internal signals
ENC PHA PTA19 / TRGMUX IN13 | Phase A signal of the Encoder sensor
ENC PHB PTA20/ TRGMUX IN14 | Phase B signal of the Encoder sensor
GD3000_EN PTB12 / GPIO Enable signal for GD3000
GD3000_RST PTB13/GPIO Reset signal for GD3000
GD3000_CS PTB17 / GPIO Chip select signal for GD3000
GD3000_INT PTC7 / EIRQ7 Interrupt signal indicating GD3000 fault
TST_GPIO_C24 PTC24 / GPIO GPIO toggling to measure execution time
SIUL2 TST_GPIO_B20 PTB20 / GPIO GPIO toggling to measure execution time
BTN_INC_SW5 PTB26 / GPIO Application control via board button SW5
BTN _DEC_SW6 PTB19 / GPIO Application control via board button SW6
LED _RED PTA29 / GPIO RGB_RED indicating fault state
LED_GREEN PTA30/ GPIO RGB_GREEN indicating ready/calib state
LED BLUE PTA31/ GPIO RGB BLUE indicating run state

Pin tool and Peripherals tool simplify configuration and particular RTD drivers offers an API to control

the ports during the runtime.

4.2.1.1.SIUL2

System Integration Unit Lite2 (SIUL2) is a peripheral which provides control over all electrical pin
controls and ports. It enables selection of the functions and electrical characteristics that appear on

external chip pins. The pins assignment can be carried out by means of Pins tool. The pin assignment of
the example is shown in Figure 15 . Electrical characteristics as well as functionality are set in “Routing

Details ” tab. Tool also offers visualization of the pinout placement in the selected package.
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124 PTG PWMB_HS  PWMB_HS SIUL2gpio2].. eMIOS_1ch.. FLEXIOflexio.. LPSPISIpspi.. LPU/
123 PRSI PWMBLS  PWMBLS  SIUL2gpio3l. eMIOS1ch.. FLEXIOflexio.. LPSPI1lpspi. LPU/
172 PHB_I PHBI SIUL2,gpio 8[.. eMIOS_1.ch_.. FLEXIOflexio.. LPSPI2lpspi.. LPU/
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172 ADCLO p.in 2 [172] PTAB PHB_I PHB.I Input Disabled Disable Disabled Pulldown  Disabled Don't invert Disabled n/a
155 ADC_1 pin 1 - [155] PTA13 PHA_I PHA_l input Disabled Disable Disabled Pulldown  Disabled Don't invert Disabled n/a
145 LPUART 6 Ipuart_rx <- [143] PTA1S FMSTR_RX FMSTR_RX Input Disabled Disable Enabled Pulldown  Disabled Don't invert Disabled n/a
143 LPUARTE Ipuart_tx - [143] PTATE FMSTR_TX FMSTR_TX Output  Enabled Disable Disabled Pulldown  Disabled Don't invert Disabled n/a
140 SlUL2 eirg, 7 [140] PTCT GD3000_INT GD3000_INT input Disabled Disable Enabled Pulldown  Disabled Don't invert Disabled nfa
137 1CUDO out, 4 [137] PTAD PWMC_LS PWMC_LS Output Enabled Disable Disabled Pulldown  Disabled Don't invert Disabled n/a
135 1CUD out.5 - [135] PTAT PWMC_HS PWMC_HS Output Enabled Disable Disabled Pulldown  Disabled Don't invert Disabled nfa
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73 s gpio, 58 <- [73] PTB26 BTN_INC_SWS BTN_INC_SW5 Input Disabled Disable Enabled Pulldown  Disabled Don't invert Disabled nfa
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Figure 15. Pins
In order to control SIUL2, following drivers are used and configured using Peripherals tool.

Figure 16. Pins SW drivers

Siul2_Dio and Siul_Port drivers uses configuration generated by Pins tool. Siul_Port initializes all pins
and Siul2_Dio is used to control GP1O functionality as is shown in Example 1 .

Example 1. Pin control API

void main (void)

{

Siul2_Port_Ip_Init(NUM_OF_CONFIGURED_PINS@, g_pin_mux_InitConfigArre);

}

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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void BctuFifoNotif(void)

t cntrState.usrControl.btSpeedUp = Siul2_Dio_Ip_ReadPin(BTN_INC_SW5_PORT, BTN_INC_SW5_PIN);
cntrState.usrControl.btSpeedDown = Siul2_Dio_Ip_ReadPin(BTN_DEC_SW6_PORT, BTN_DEC_SW6_PIN);
) Siul2_Dio_Ip_SetPins(TST_GPIO_C24 PORT, (1 << TST_GPIO_C24_PIN));
) Siul2_Dio_Ip_ClearPins(TST_GPIO_C24_PORT, (1 << TST_GPIO_C24_PIN));

Pin PTCY7 is used for GD3000 fault state detection so it is configured to external IRQ functionality by
Pins tool. Siul2_Icu driver is responsible for configuration of an external pin input capture event. In
“lcuHwInterruptConfigList ” tab the driver is informed whether interrupt is going to be used for IRQ
signal and proper interrupt handler is enabled and can be used in interrupt configuration as is described
in Interrupts. In “lcuSiul2 ” tab a prescaler and an interrupt filter for specific EIRQ signal is set to
eliminate interrupt on random glitches on the pin.

v SluLz_icu ~ SIUL2_ICu

Name ConfigTimeSupport lcuConfigSet IcuGeneral Name | ConfigTimeSupport | lcuConfigSet | lcuGeneral

Name |IcuMaxChannel IcuChannels |lcuSiul2 | IcuHwinterruptConfigList Name | lcuMaxChannel IcuChannels  lcuSiul2 | lcuHwinterruptConfigList

x +| | x
lcuSiul2_0
# Name ICU Peripheral ISR Name  lculsrEnable
Name leuSiul2_0 0 IcuHwinterruptConfigList_0 SIUL2_0_IRQ_CH_7 %
SIUL2 instance 0
ICU External Interrupt Filter Clock Prescaler 0

ICU External Alternate Interrupt Filter Clock

0
Prescaler

“ Interrupt config array +
# MName Hardware channel ICU External Enable Interrupt Filter ICU External Interrupt Filter setting
0 lcuSi.. 7 M 10

Figure 17. SIUL EIRQ configuration

“IlcuChannels ” tab configures more general settings like mode, which edge of the signal should be
detected and which notification function should be called on this event. Notification function is part of
custom code. Previous settings are referenced through “lcuChannelRef « parameter. API functions must
be called as is shown in the Example 2 in order to apply config settings, to enable interrupt and to enable
notification function at SIUL level.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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v SIUL2_ICU
Mame | ConfigTimeSupport lcuConfigSet lcuGeneral

Name | lcuMaxChannel IcuChannels lcuSiul2 | lcuHwinterruptConfigList

+
GD3000_INT Name GD3000_INT
leuChannelld 0
lcuChannelRef [Siul2_low/Siul2_tcu/Siul2ConfigSet/lcuSiul2_0/lcuSiul2Channel_0
lcuDefaultStartEdge ICU_RISING_EDGE
lcuMeasurementMode ICU_MODE_SIGMAL_EDGE_DETECT

» lcuSignalEdgeDetection
v 0

Name leuSignalEdgeDetection

~ lcuSignalMotification

0 | GD300O_INT_Handler

Figure 18. ICU channel configuration

Example 2. Pin input capture API

void main (void)

{
Siul2_TIcu_Ip_Init(SIUL2_ICU_IP_INSTANCE, &Siul2_Icu_Ip_©_Config_PB_BOARD_InitPeripherals);
Siul2_Icu_Ip_EnableInterrupt(SIUL2_ICU_IP_INSTANCE, 7U);
Siul2_Icu_Ip_EnableNotification(SIUL2_ICU_IP_INSTANCE, 7U);

X

Example 3. SIUL ICU notification function

void GD3000_INT_Handler (void)
{

gd3000Status.B.gd3000IntFlag = true;

4.2.1.2. TRIGGER MUX

The TRGMUX peripheral provides an extremely flexible mechanism for interconnection of various
trigger sources to multiple pins/peripherals. It is a very useful feature for debugging. This is configured
using Trgmux_Ip driver.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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Drivers (4]
Adc_Sar_lp Bctu_lp Emios_lcu Emios_Mcl_lp
Emios_Pwm IntCtri_lp Leu_lp Lpspi
Lpuart_Uart osif_1 Siul2_Dio Siul2_leu
Siul2_Port Trgmuz_lp

Figure 19. TRGMUX SW driver

TRGMUX implements configurable connection between peripherals, which offers flexible triggering
scheme in S32K3 device. This device has 16 pads (SIUL2) mapped to TRGMUX inputs and TRGMUX
outputs, so internal signals can be visualized to output pin. In the example pins PTB18 (TRGMUX out
9) and PTB21(TRGMUX out 12) are selected as pins for internal signal monitoring. Connection is
created within TRGMUX hardware group. For example hardware group TRGMUX _IP_SIUL_12 15
gathers TRGMUX SIUL outputs 12-15. The connection is made by selecting specific hardware output
and input. PTB18 visualizes output of eMIOS0 CH4 (which is a trigger signal for analogue capturing)
and PTB21 visualizes eMIOS0 CH1 which is PWM signal for phase A. Other signals like reload can be
visualized by changing the “Hardware Input” configuration. Setting is applied by calling
Trgmux_Ip_Init function. Full list of all possible interconnections can be found in
S32K3XX_TRGMUX_connectivity.xls attached to S32K3xx Reference Manual [7] .

v TRGMUX Preset Custom... ™
Name ConfigTimeSupport General | Specific Configuration
MName | Trgmux Logic Group
+| (%
0 Name TST_TGMX_012_B21
! Hardware Group TRGMUX_IP_SIUL2_12_15 v
2
; Hardware Lock O
4 ~ Trgmux Logic Trigger + || X
5
# Name Logic Trigger Name Hardware QOutput Hardware Input
0 trg..  TRGMUX_LOGIC_GROUP_0_TRIGGER_D TRGMUX_IP_OUTPUT_SIUL2_12_15_0UT12 TRGMUX_IP_INPUT_EMIOSO_IPP_CH1
< >
0 Name TST_TGMX_09_B18
L Hardware Group TRGMUX_IP_SIUL2_8_11 v
2
3 Hardware Lock |
4 ~ Trgmux Logic Trigger +| | X
5
# Name Logic Trigger Name Hardware Output Hardware Input
0 rg... TRGMUX_LOGIC_GROUP_1_TRIGGER_D TRGMUX_IP_OUTPUT_SIUL2_8_11_0UTS TRGMUX_IP_INPUT_EMIOSD_IPP_CH4
< >

Figure 20. TRGMUX groups for debugging purposes

4.2.2. Clock and Interrupt configuration

In order to configure S32K3 clocks and interrupts RTD offers Clocks Configuration tool companioned
by Clock_Ip driver and Peripherals tool for OSIF and IntCrlt_Ip driver configuration.
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Drivers [+
Adc_Sar_Ip Bectu_lp Emios_lcu Emios_Mcl_Ip
Emios_Pwm IntCtrl_lp Leu_lp Lpspi
Lpuart_Uart osif_1 Siul2_Dio Siul2_leu
Siul2_Port Trgmux_lp

Figure 21. OS Interface and interrupts

4.2.2.1.Clocking

S32K344 features a complex clocking sourcing by Fast internal RC oscillator (FIRC), Slow internal RC
oscillator (SIRC), Fast external crystal oscillator (FXOSC), Slow external crystal oscillator (SXOSC),
Phase-locked loop (PLL), Clock Generation Module (MC_CGM), Mode Entry module's (MC_ME).

To run the core of the S32K344 at maximum frequency 160MHz, S32K344 is supplied externally by 16
MHz crystal. This clock source supplies Phase-lock-loop (PLL) and its output is adjusted to 160 MHz
frequency. PLL output PHIO is then used to supply the core CORE_CLK. All real-time control
peripherals are supplied by CORE_CLK , what eliminates unwanted wait states on the bus when
peripherals are controlled by core during runtime.

This clock configuration can be setup by S32 Clock Configuration tool which offers visual graphical
user interface (GUI) to change the settings. Clock settings are applied by calling Clock_Ip_Init()
function, where generated configuration by Clocks tool is an argument.

1= Clocks Diagram 2 | [ Clocks Table - @ @ & @ B Search elemen
RunMode DRUN v |Clock Development Error Detect Disabled v | Clock User Mode Support Disabled v | Clock Disable Ram Wait States Config Disabled w || Clock Disable Flash Wait States Config
Disabled v || Clock Loops Timeout| 50000 || Clock Timeout Method | 0SIF_COUNTER DUMMY v | Clock Register Values Optimization| DISABLED v || Get Clock Frequency APl Enabled v |

Enable Cmu Notification| Disabled v || CmuNotification| NuLL_PTR || Enable PrepareMemoryConfig| Disabled v || ClockPrepareMemaryConfig | NULL_PTR

cLKkouT
FIRC
SIRC

PYosc

LPri 16 MHz

Figure 22. Clocks tool

,—b CLKOUTO_RUN_CLK sz

Clock setting is summarized in the following table.
Table 2. S32K144 clock configuration

Clock Frequency Peripheral
CORE_CLK 160 MHz ADCO0-2,BCTU,LCUO-1,eMIOS0-2
AIPS SLOW_CLK 40 MHz LPSPI1, LPUART6,TRGMUX
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Operating System Interface (OSIF) driver provides basic timing/OS services for drivers, allowing for
OS independent implementations. This example is baremetal without operating system, but other drivers
can use OSIF for timeouts detection. OSIF settings are applied by calling OsIf_Init() function.

OSIF configuration privers;
Name

Mode General Mode

~ 0SIF configuration

Multicore Support
User Mode Support
Dev Error Detect
Use System Timer
Use Custom Timer

pORO0OO

L

Instance ID 5

Operating System Type Baremetal
Core frequency 160000000

Figure 23. Clocks tool

4.2.2.2.Interrupts

IntCrtl_Ip driver is responsible for an interrupt configuration on S32K3 platform. Settings impact
Miscellaneous System Control Module (MSCM), Nested vectored interrupt controller (NVIC), and

IP configuration jprivers IP configuration jpivers

Name Int [ Name  IntCtri_Ig

Mode  IP Mode Mode  IP Mode

Name ConfigTimeSupport General Configuration |Interrupt Controller | Generic Interrupt Settings Name ConfigTimeSupport General Configuration Interrupt Controller| Generic Interrupt Settings
Name intRouteConfig

x

v PlatformisrConfig

0 Name IntCtriConfig_0
# Name Interrupt Name Target Core - M7_0 Target Core - M7_1 Handler
47 Platf.. PMC_IRQn
48 Platf.. SIUL_O_IRQn SIUL2_EXT_IRQ_0_7_ISR # Name Interrupt Name Interrupt Enabled  Priority
49 Platf.. SIUL_1_IRGQn undefined_handler - 0
50 Platf.. SIUL_2_IRQn undefined_handler
73 Platf.. CMUZ_IRGn undefined_handler
T4 Platf.. BCTU_IRQn Bctu_0_lsr
75 Platf.. LCUO_IRGn ] undefined_handler

undefined_handler ~ PlatformisrConfig

10RO

47 Platf.. PMC_IRQn
48 Platf.. SIULDIRQn
49 Platf.. SIUL1IRQn
50 Platf.. SIUL_2_IRQn
73 Platf.. CMUZ2_IRQn
74 Platf.. BCTU_IRQn
75 Platf.. LCUO_IRQn

KOl
OxOO0OoOgO

o0 o 9090

Figure 24. Interrupt controller

interrupt vector table. The example uses two interrupts: External IRQ from pin and Interrupt from
BCTU. There are three options to set in “Generic Interrupt settings ” column “Handler ”: undefined
handler user can set also own custom handler (but this interrupt service routine must be defined in
custom code) or interrupt service routine from RTD driver. Naming of RTD interrupt service routines
can be found in integration manual of particular RTD driver. Bctu_0_Isr and

SIUL2_EXT _IRQ_0_7_ISR handle their interrupt and call notification functions on specific event
defined by Siul2_Icu and Bctu_Ip component settings in peripheral tool (GD3000_INT_Handler,
BctuFifoNotif).
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Interrupt setting and handlers installation to vector table are realized by calling IntCtrl_Ip_Init(),
IntCtrl_Ip_ConfiglrgRouting().

Example 4. Clock API

void main (void)

{

IntCtrl_Ip_Init(&IntCtrlConfig 0);
IntCtrl_Ip_ConfigIrqRouting(&intRouteConfig);

4.2.3. Center-aligned PWM

Generation of the center aligned PWM functionality is realized by modules eMIOS, TRGMUX and
LCU. In order to configure and control those peripherals following RTD drivers are used:
Emios_Mcl_Ip to configure eMIOS timebase, Emios_Pwm to configure and control eM10S PWM
channels, Lcu_Ip to configure and control LCU and Trgmux_Ip to interconnect eMIOS and LCU.

= PWMA_LS R
< PWMA_HS :
PwmA 5 N LCU PWMB_LS |
PWMB s Compl. pairs 7
EMIOS owMe ) | Dead time pwis_ris) - GD3000 N J
> x Fault PWMC_LS R
— & PWMC_HS R
Figure 25. PWM signal forming
Drivers 4]

Adc_Sar_Ip Bctu_lp Emios_lcu Emios_Mcl_Ip

Emios_Pwm IntCtrl_lp Leu_lp Lpspi

Lpuart_Uart osif_1 Siul2_Dio Siul2_lcu

Siul2_Port Trgmux_lp
Figure 26. Drivers for PWM generation
4.2.3.1.eMIOS

eMIOS CHO is configured as a time base for PWM signals. This channel can create local time base for
CH 1-7. Chanel operates in a Modulus Counter Buffered (MCB) mode where there is just up counting.
When the internal counter matches a value defined by field period (channel register A of the eMIOS
channel) and a clock tick occurs, the internal counter is reset to 1 and reload is generated. Considering
160MHz and bus prescalers DIV_1, the “Default period” 8000 ticks means 50us/20 kHz. “Offset at

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022
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start” gives the opportunity to initialize counter value before the counting is started what allows to
configure delay between multiple synchronized time-bases.

EMIOS [Drivers] = @
Mame A Custom name [_]
Mode General Mode e

~ Emios Mcl Preset Custom... "

Name ConfigTimeSupport Mcl General Configuration EmiosCommon

=+ | X

0 Name EmiosCommon_0
Emios Instance EMIOS_0 v
Enable EMIOS freez state M
EmiosMclEnableGlobalTimeBase =
Clock Divider Value 1
~ Emios Master Buses + || x
0 Name EMIOS_0_PWM_TIME_BASE
! Emios Channel 0 v
Master Bus Mode Type MCB_UP_COUNTER v
Default period 8000
Offset at start 0
Master Bus Prescaler DIvV_1 v
Master Bus Alternate Prescaler DIv_1 v
Allow Debug Made [
< > || PWM exclusive access [

Figure 27. PWM time base configuration

eMIOS CH 1-3 are configured to generate the PWM signal for motor phases PHA-C. Channels operates
in Output PWM Buffered (OPWMB) mode. This is the most flexible eMIOS PWM mode, which offers
independent setting of both PWM signal edges (by channels register A and B) and can form the most
common types of PWM signal. Channels select local timebase BCDE as a counter bus and timebase
settings are also referenced through “PwmEmiosBusRef ” field. Channel is able to see timebase counter
value through the BCDE bus and compare it with its registers A and B. “Polarity ” defines output state
on specific compare. Complete timing diagram can be found in Figure 12. Driver offers an abstraction
where “duty cycle ” is an active pulse (space between compare A and B) and “Phase shift” defines
placement of this active pulse within the PWM period. Proper values for register A and B are calculated
by driver. Init values of the “Phase shift” and “duty cycle ” are set in Peripherals tool. Settings are
applied by calling Emios_Pwm_Ip_InitChannel() and Emios_Mcl_Ip_Init() where after calling the
Emios_Mcl_Ip_Init() time base counting is started. PWM signal is modified during the runtime by
disabling PWM update, updating the dutycycle and the phase shift and enabling the update. Registers A
and B are double buffered in OPWMB mode so new values of registers A and B are propagated on
nearest reload generated by time base.
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Emios Pwm driver /privers) B = @
Name Emios_Pwm Custom name D
Made  Emios Pwm Mode v
PwmEmios_0
Name PwmEmios_0
Hardware instance Emios_0 v
+| | X
Name EMIOS_PWMA
]2 Channel Id CH_1 v
3 Mode select EMIOS_PWM_IP_MODE_OPWMB v
Flag Generation Trailing_Edge v
Counter Bus EMIOS_PWM_IP_BUS_BCDE v

~ PwmEmiosBusRef

i] JEmios_Mel_lp/EmiosMel/EmiosCommon_0/EMIOS_0_PWM_TIME_BASE v|I=
Polarity EMIOS_PWM_IP_ACTIVE_HIGH v
Duty cycle [ticks) [ 4000 |
Period [ticks] | 8000 |
Phase Shift [ticks] [ 2000 |

Figure 28. PWM channel configuration
Example 5. eMIOS API for PWM

void main (void)

{
Emios_Pwm_Ip_InitChannel(@U, &Emios_Pwm_Ip_BOARD_InitPeripherals_I@ Chl);
Emios_Pwm_Ip_InitChannel(@U, &Emios_Pwm_Ip_BOARD_InitPeripherals_IO_Ch2);
Emios_Pwm_Ip_InitChannel(@U, &Emios_Pwm_Ip_BOARD_InitPeripherals_IO_Ch3);
Emios_Mcl_Ip_Init(eU, &Emios_Mcl_Ip_©_Config_BOARD_INITPERIPHERALS);

}

tBool ACTUATE_SetDutycycle(SWLIBS_3Syst_FLT *fltpwm)

{
Emios_Pwm_Ip_ComparatorTransferDisable(@U, (uint32_t)@bl110U);
Emios_Pwm_Ip_SetPhaseShift(@u, 1U, pwmShiftA);
Emios_Pwm_Ip_SetDutyCycle(@U, 1U, pwmDutyA);
Emios_Pwm_Ip_SetPhaseShift(@u, 2U, pwmShiftB);
Emios_Pwm_Ip_SetDutyCycle(@U, 2U, pwmDutyB);
Emios_Pwm_Ip_SetPhaseShift(eu, 3U, pwmShiftC);
Emios_Pwm_Ip_SetDutyCycle(@U, 3U, pwmDutyC);
Emios_Pwm_Ip_ComparatorTransferEnable(0U, (uint32_t)eblileu);

}
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4.2.3.2. TRIGGER MUX

TRGMUX ensures a connection between eMIOS and LCU. Settings within the “Hardware group”
TRGMUX _IP_LCUOQ_0 connects outputs of eMIOS0 channels 1-3 to LCUO inputs 0-2. Setting is
applied by calling Trgmux_Ip_Init() function.

Trigger MUX (privers) = @
Name Trgmu Custom name [_]
Mode General Mode ~
~ TRGMUX Preset | Custom... w

Name ConfigTimeSupport |General | Specific Configuration

Name | Trgmux Logic Group

7= [f
0 Name EMIOS_PWM_TO_LCU
; Hardware Group TRGMUX_IP_LCUOD O W
3 Hardware Lock O
4 ~ Trgmux Logic Trigger +| | X
Name Logic Trigger Name Hardware Output Hardware Input
0 trg.. TRGMUX_LOGIC_G.. TRGMUX_IP_OUTPUT_LCUO_O_INP_IO TRGMUX_IP_INPUT_EMIOSO_IPP_CH1
1 trg.. TRGMUX_LOGIC_G.. TRGMUX_IP_OUTPUT_LCUO_O_INP_IN TRGMUX_IP_INPUT_EMIOSO_IPP_CH2
2 trg.. TRGMUX_LOGIC G.. TRGMUX_IP_OUTPUT_LCUO_O_INP_I2 TRGMUX_IP_INPUT_EMIOSO_IPP_CH3
< >
Figure 29. TRGMUX settings for PWM signals

Logic control unit (LCU) is a peripheral for a real time control, which offers a programmable logic
function to create output waveforms or to process digital signals. LCU contains three Logic cells (LC)
embedded each with four inputs and outputs with configurable true table for each output and more other
features like digital filters, force inputs, sync inputs, SW override logic. In order to generate the PWM
complementary signal following functionality is needed: Input multiplexing, Look Up Table (LUT),
Digital filters, output polarity settings as is shown in Figure 30. Full featured LCU diagram can be
found in S32K3xx Reference Manual [7] . Lcu_lp driver is used to configure and to control LCU. In
this example LCUO instance is selected to generate PWM complementary pairs. LCO generate signals
for phases A and B and LC1 generates signals for Phase C. First configuration relates to inputs
multiplexing. Configurations 0-2 in “Lcu Logic Input” tab create a connection between LCU instance
inputs and LC inputs. Multiplexor inputs 0,1(eMIOS0 CH 1,2) are connected to LCO input 0,1 and
multiplexor input 2 (eMIOS0 Ch3) is connected to LC1 input 0. Output configuration for
complementary pairs is in atab “Lcu Logic Output” configurations 0-5. The first important thing to
configure is an output polarity. High side inputs of GD3000 have inverted polarity so also related
outputs have inverted polarity. It ensures that during the time when LCU outputs are disabled all
MOSFETSs are in an inactive state (also different strategies like for example all bottom MOSFETSs on
can be used by changing the output polarity settings). Next setting is Look-up Table (LUT) for every
output. LUT defines output state of the LUT Block for every combination of four inputs (combination
0000 is least significant bit of the LUT register). For example O0 mirrors 10 and O1 (as complementary
channel) negates 10 as is shown in Table 3. Last thing to configure is a dead time. It is generated using
digital filters where rising edges of the LUT block output are delayed. Complete waveform composition
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of complementary channels can be seen in the Figure 30. GD3000 is able to automatically turn off
MOSFETs when fault occurs. In case of simpler drivers or external fault logic, LCU offers
asynchronous Force logic which can automatically disable LCU outputs on external pin event. For more
details about this feature see S32K3xx Reference Manual [7] . In order to configure and control LCU, a
Lcu_Ip RTD driver is used. Settings are applied by calling Lcu_Ip_Init() function and outputs can be
enabled/disabled by calling Lcu_Ip_SetSyncOutputEnable().

eMIOS output

PWMx

LCUO
LCO g ‘ ‘
eMIOS_CH1_OuUT 10 §
eMIos_CHz_ouT| 11 LT | Risearal || output o0 |PwmaLs 2
eMIOS_CH3_OUT] :g Block Edge delay polarity lg
o1 g
o LT || Risearal | output PWMA_HS %
) Block Edge delay polarity ]
X T g
) se
= wt | RiseaFal || output il B
Block Edge delay polarity - ‘
LT |l RisesFal || output 03 |PwMB Hs £ PWMx_LS
Block Edge delay polarity 2o
85
§§ . 7‘ PWMx_HS
—
T2
£3
Figure 30. Simplified LCU features block diagram for PWM
Table 3. LUT configurations for LCUO LCO
LCO I3 |LCO 12 |LCO I1 LCO 10 LCO O0 |LCO O1 |LCO O2 |LCO O3
X X PWM PHB | PWM PHA PWMA LS | PWMA HS | PWMB LS | PWMB HS
0 0 0 0 1 0 1 0
0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 1 0 1 0 1
1 0 0 0 1 0 1 0
1 0 0 1 0 1 1 0
1 0 1 0 1 0 0 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 0
1 1 0 1 0 1 1 0
1 1 1 0 1 0 0 1
1 1 1 1 0 1 0 1
LUT 0x5555 OxAAAA 0x3333 0xCCCC
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B = @
Custom name [_]

w

Preset Custom... v

Name | ConfigTimeSupport

|Name |.Lcu Logic Insr.ance._ Leu Logic Input| Leu Logic Outpu'(|

| |Lugic Control Unit (LCU) Configuration

Preset | Custom... v

Figure 33. LC outputs for PWM

(x| [~
o Preset | Custom... v|
! Name [ PWM_GD3000_CONTROL |
Logic Instance Name [ LCU_LOGIC_INSTANCE 0 |
LCU Hardware Instance LCU_IP_HW_INST_O v |
Operation Mode |INTERRUPT v
Using Force Signal O
Using Sync Signal For Software Sync Mode D
w | anic Call Confimration |ict
Figure 31. LCU instance configuration for PWM
|Name | Leu Logic Instance Leu Logic Input.| Leu Logic Outpu'(|
1 % I S
i Name | Leu_INP_EMIOS_PWMA
1
2 Logic Input Name | LCU_LOGIC_INPUT_O
3 Hardware Instance LCU_IP_HW_INST_O W
4 Hardware Logic Cell LCU_IP_ HW_LC O v
5 Hardware Input LCU_IP_HW_INPUT_O w
6
Mux Select LCU_IP_MUX_SEL_LU_IN_O w
Using Software Override feature [
Software Owverride Mode LCU_IP_SW_SYNC_IMMEDIATE
< > Software Owverride Value LCU_IP_SW_OVERRIDE_LOGIC_LOW
Figure 32. LC inputs configuration for PWM
v Ly v LU
Name | ConfigTimeSupport General |'—D‘Ji( Control Unit (LCU) Configuration| | Name | ConfigTimeSupport General Logic Control Unit (LCU) Configuration |
.Na"‘eh-‘" Logic Instance  Lcu Logic Input |.|-¢U Logic Output | _Name[Lcu Logic Instance Lcu Logic Input | Lcu Logic Output|
o = 1 R 5
0 Name PWMA LS 0 Name | PWMA_HS
; Logic Output Name LCU_LOGIC_OUTPUT_O L; Logic Output Name | LCU_LOGIC_OUTPUT 1
3 Hardware Instance LCU_IP_HW_INST_O 3 Hardware Instance LCU_IP_HW_INST_O0
4 Hardware Logic Cell LCU_IP_HW_LC_O 4 Hardware Logic Cell LCU_IP_HW_LC 0
5 Hardware Output LCU_IP_HW_OUTPUT_0 5 Hardware Output LCU_IP_HW_OUTPUT 1
6 —_
; Output LUT Control 0x5555 : Output LUT Control | OXAAAA
8 LUT Rise Filter % 8 LUT Rise Filter (96
9 LUT Fall Fitter 0 9 LUT Fall Filter 0 S
LCU Interrupt Callback | NULL_PTR LCU Interrupt Callback | NULL_PTR
Enable Debug Mode [ Enable Debug Mode [}
Invert Output (] Invert Output
LUT DMA Enable O LUT DMA Enable O
LUT Interrupt Enable O LUT Interrupt Enable O
Using Force Signal O Using Force Signal O
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4.2.4. Analogue data capturing

Motor control analogue feedback capturing is realized by ADCO, ADC1, BCTU and eMIOS peripherals.
BCTU controls parallel conversion of ADCO and ADC1. eMIOS defines the trigger point when the
conversion should start. ADC2 was reserved for a MCU temperature measurement and is not controlled
by BCTU in order to demonstrate a non-real time measurement in parallel to real time control. In order
to configure and to control those peripherals, following RTD sw drivers are used: Adc_Sar_Ip, Bctu_Ip,

Emios_Mcl_Ip, Emios_Pwm.

Trigger R
Result ADCO
| Result
EMIOS oHefe—2 BCTU
Trigger .
" ADC1
esult
Figure 34. MC analog feedback capturing
Drivers L+
Adc_Sar_lp Bcu_lp Emios_lcu Emios_Mcl_Ip
Emios_Pwm IntCtrl_lp Leu_lp Lpspi
Lpuart_Uart osif_1 Siul2_Dio Siul2_lcu
Siul2_Port Trgmux_lp

Figure 35. Drivers for analogue feedback capturing

4.2.4.1.ADC

The S32K344 device has three Analog-to-Digital Converters (ADCs) with the SAR algorithm. The ADC
channels are divided into three groups - Precision, Standard and External (each allows independent
configuration settings and different accuracy/performance level). Each channel has selectable resolution
(8-, 10-, 12-, 14-hit). Conversion can be started by Normal conversion trigger, Injected conversion
trigger or BCTU conversion trigger. There is also special mode , BCTU control mode, where it is
explicitly set that only the BCTU can start a conversion of ADC instance. All other trigger sources are
ignored. This mode is used for MC measurement ADCO and ADC1 whereas ADC2 executes normal
conversion invoked by SW. The most important setting can be seen in the Peripherals tools settings.
Settings are applied calling Adc_Sar_Ip_Init() function and after the configuration ADCs are calibrated
by Adc_Sar_Ip_DocCalibration(). Temperature measurement is invoked by
Adc_Sar_Ip_TempSenseGetTemp() function as a non-real time control background task.
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~ AdcHwUnit

| AdcHwUnit_0

AdcHwUnit_1
AdcHwUnit 2

+| (%

Name

Adc Hardware Unit

Adc Prescaler Value

Adc Calibration Prescale

Adc Presampling channel 0-31
Adc Presampling channel 32-63
Adc Presampling channel 64-95
Adc Ctu mode

Conversion resolution

Data alignment

Adc Voltage Reference

Adc Unit Normal Sampling Duration 0
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| AdcHwUnit_0

ADCD

1

VREFL
VREFL
VREFL

Control Mode

RESOLUTION_14

Right aligned

0x50

22

Figure 36. ADC configuration for MC measurements

AdcSar Enable Tempsense Api
TempSense Voltage Supply 0x50
~ AdcHwUnit +|[x

AdcHwUnit_0 Name

.ﬂchwUn!t_i Adc Hardware Unit
AdcHwUnit_2

Adc Connversion Mode

Adc Prescaler Value

Adc Calibration Prescale

Adc Result Overwrite Enable
Adc Presampling channel 0-31
Adc Presampling channel 32-63

Adc Ctu mode

Conversion resolution

| AdcHwUnit_2

ADC2
One shot

VREFL

VREFL
VREFL
Disabled

RESOLUTION_12

Adc Unit Normal Sampling Duration 1 100
“ Channel configurations array +
| TEMPSENSOR 0! ' Name AdcChannel_0
Adc Physical Channel Name TEMPSENSOR_OUTPUT_ChanNum49
Enable in Normal Chain O
Enable in Injected Chain O
Adc Enable Presampling O

Figure 37. ADC configuration for temperature measurements

Example 6. ADC API

void main (void)

{

JHHAEFAK A KA KKK KK HK KA KA KA KA KA KA A KA KA KA KA AR AR R K A KKK KKK KK KKK AR KK KK

* ADC Driver

KA KKK KKK KK AR KK K KK KKK SOK S KKK KRR K KR SK SRR KSR SRR K KR KRS K oK

do {

status
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do {
status = (StatusType)Adc_Sar_Ip Init(1U, &AdcHwUnit_1 BOARD_INITPERIPHERALS);
} while (status != E_OK);

do {
status = (StatusType)Adc_Sar_Ip_Init(2U, &AdcHwUnit_2_BOARD_INITPERIPHERALS);
} while (status != E_OK);

do {
status = (StatusType)Adc_Sar_Ip_DoCalibration(euU);
} while (status != E_OK);

do {

status = (StatusType)Adc_Sar_Ip_DoCalibration(1U);
} while (status != E_OK);
do {

status = (StatusType)Adc_Sar_Ip_DoCalibration(2U);
} while (status != E_OK);

Adc_Sar_Ip_TempSenseEnable(0U);

TemperatureGetStatus = Adc_Sar_Ip TempSenseGetTemp(2U, OU, &TemperatureRaw);

4242 BCTU

S32K344 has single instance of a BCTU. The BCTU accepts ADC conversion-request trigger inputs and
routes those requests to one or more ADCs. There are 72 trigger inputs. 69 inputs are coming from
eMIQOS channels (connection is realized through channels flag) and three from TRGMUX ( TRGMUX
output is routed to BCTU). All triggers can be also invoked by a software instead of the HW source.
Every trigger can be configured to invoke single conversion or predefined list of conversions.
Conversion result can be stored into BCTU data register (there is one register per ADC instance), one of
the BCTU FIFOs or into a memory buffer by DMA transfer. Conversion results remain also in the
result register of ADC channel.

In this example eMIOS0 CH4 is selected as a trigger for MC analogue quantities measurement. FIFOL1 is
selected for “Data Destination ”. The trigger is configured as a list of parallel conversions ADCO, ADC1
in “Adc Target Mask”. List of ADC channels is defined in “BCTU List Items” while order is given by
the “Adc Target Mask”: BctuListltems_0 is ADCO, BctuListltems_1 is ADC1 etc. Watermark of the
FIFOL1 “Watermark Value’ is set on 3 and “Interrupt Notification” is enabled. When the trigger comes,
parallel conversion of the first two list items starts (phase currents) and once conversion has been
completed, next channel couple takes a place (DC bus voltage and dummy measurement). Once all
results has been stored into the FIFO, an interrupt is raised and handled by BCTU RTD interrupt handler
and custom notification function Bctu FIFO1 WatermarkNotification is called. Conversion result
(Data and additional information about conversion like trigger number, ADC channel and ADC
instance) are read from the FOFO using Bctu_Ip_GetFifoResult() function. Settings are applied by
calling Bctu_Ip_Init() function. After enabling the notification function and BCTU global trigger, BCTU
IS active.
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Table 4. Possible variations of ADC target mask

ADC target mask Defines the BCTU ADC command list operating mode
LIST SINGLE
0 0 1 of single conversions ADCO conversion ADCO
0 1 0 of single conversions ADC1 conversion ADC1
1 0 0 of single conversions ADC2 conversion ADC2
0 1 1 of parallel conversions ADCO, ADC1 X
1 1 0 of parallel conversions ADC1, ADC2 X
1 0 1 of parallel conversions ADCO, ADC2 X
1 1 1 of parallel conversions ADCO, ADC2, ADC3 X
~ BectuHwUnit b 4
0 Name | BetuHwUnit 0 |
Low power mode enable O
Global HW triggers enable
New Data DMA enable mask | 0 |
Fifo Dma Raw Data U
Trigger Notification [ NULLPTR |
v Internal Triggers +
BctuTrigConfig 0 Name | BetuTrigConfig_0
Trigger Source BCTU_EMIOS_0_4
Enable Trigger Loop O
Data Destination BCTU_FIFO1
Enable HW triggering
Defines the BCTU ADC command list usT
operating mode
Adc Target Mask [ 0b011
A 0
< > Conversion List Start Index | 0

v Bctu LIST items -+
MName
BetuListitems_0

BctuListitems_1
Bctulistiterns_2
BctuListitems_3

WoR =2 R

Figure 38. BCTU Trigger configuration

x

ADC Channel ID Next channel wait on trigger  Last channel
P2_ChanNum2 []
P1_ChanNum1 []
P1_ChanNum1 [
P3_ChanNum3  []]

ROOO
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NOTE

BctuListltems_3 (P3_ChanNuma3) is dummy measurement since the list is
list of two parallel measurements and only 3 motor control quantities are
measured (current phase A, current phase B, DC bus voltage)

~ Result FIFOs + || X

BctuResultFifos {  nyame BctuResultFifos_0
FIFO index FIFO1

Watermark value 3

Interrupt notifications enable o

Watermark notification Betu_FIFO1_WatermarkNotification
Underrun notification NULL_PTR

Overrun notification NULL_PTR
Watermark DMA enable ]

Figure 40. BCTU FIFO configuration

Example 7. BCTU API

void main (void)

{
Bctu_Ip_Init(@U, &BctuHwUnit_© BOARD_INITPERIPHERALS);
Bctu_Ip_EnableNotifications(@U, BCTU_IP_NOTIF_LIST);
Bctu_Ip_SetGlobalTriggerEn(@U, TRUE);
}
void Bctu_FIFO1_WatermarkNotification (void)
{
mCount = 0;
while (Bctu_Ip_GetFifoCount(euU, oU))
{
Bctu_Ip_GetFifoResult(@U, OU, &measuredValues[mCount++]);
}
4.2.4.3.eMIOS

eMios channel 4 is configured to generate the trigger for BCTU in precise moment. Same modes and
drivers are used as in the use case of PWM generation in chapter eMIOS. Trigger channel uses a global
time base A (CH 23). This trigger time base is synchronized with PWM time base with no delay.
Considering 160 MHz, a period 16000 tick means 100 us so the sampling frequency of motor quantities
is 10 kHz. An important setting for CH4 is “Flag generation ”. Trialing_Edge means generating
flag(what is the event when BCTU is triggered) on compare with register B. With a used “Polarity ” it is
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in the falling edge of the CH4 output, which can be visualized on the pin using TRGMUX. Trigger is
generated five cycles after reload (PWM time base reload and Trigger time base reload are overlapping
since there is no delay). In this example the trigger moment is not changing during the runtime, but it
possible to change trigger moment in same way like update of PWM channels. Settings are applied by
calling Emios_Pwm_Ip_InitChannel() and Emios_Mcl_Ip_Init functions().

EM'OS}DH’VWSJ‘ Emios Pwm driver(,grgyg,;‘r
Name Mel_If Name
Mode  General Mode Mode  Emios Pwm Mode
7 Emios Mel PwmEmios_0
Name | ConfigTimeSupport | Mcl General Configuration | EmiosCommon
Name PwmEmios_0
4| [ % Hardware instance Emios_0
0 Name EmiosCommon_0 ~ Emios Channels +| | x
Emios Instance EMIOS_0 -
- 0 Name EMIOS_TRIGGER_BCTU_MC_MEAS
Enable EMIOS freez state %) 1 @ o 4
= H
EmiosMclEnableGlobalTimeBase  [v] 2 shiz =
Clock Divides Value T 5 Mode select EMIOS_PWM_IP_MODE_OPWMS
Flag Generation Trailing_Edge
v Emios Master Buses |+ | X Counter Bus EMIOS_PWM_IP_BUS_A
0 Name EMIOS_0_TRIGGER TIME_BASE R
L Emios Channel 23 0 fEmios_Mcl_lp/EmiosMcl/EmiosCommon_0/EMIOS_O_TRIGGER_TIME_BASE
Master Bus Mode Type MCB_UP_COUNTER Polarity EMIOS_PWM_IP_ACTIVE_HIGH
EaZIEETER 16000 Flag Event response EMIOS_PWM_IP_NOTIFICATION_DISABLED
Offset at stan 0
Master Bus Prescaler DIV_1 Duty cycle [ticks] 3
Master Bus Alternate Prescaler DIV_1 Period [ticks] 16000
Allow Debug Mode Phase Shift [ticks] 0
< > | PWM exclusive access

Figure 41. eMIOS trigger configuration
Example 8.eMIOS API for PWM

void main (void)

{

Emios_Pwm_Ip_InitChannel(@U, &Emios_Pwm_Ip_BOARD_InitPeripherals_IO_Ch4);

Emios_Mcl_Ip_Init(@U, &Emios_Mcl_Ip_©_Config_BOARD_INITPERIPHERALS);

4.2.5. Quadrature decoder

Quadrature decoder feature is achieved by cooperation of eMIOS, TRGMUX and LCU modules. This
feature is used to decode the quadrature signals generated by rotary sensors used in motor control
domain. This mode is used to process encoder signals and determine rotor position and speed.

There are three output signals generated by incremental encoder as shown in Figure 42. Phase A and
Phase B signals consist of a series of pulses which are phase-shifted by 90° (therefore the term
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“quadrature” is used). The third signal (called “Index’) provides the absolute position information. In
the motion control, it is used to check the pulse-counting consistency. Index signal is not used in this
example hence position offset is calibrated during the rotor alignment.

In order to get the rotor position encoder signals PHA and PHB are brought to the LCU. LCU
preprocess them and generates pulses based on rotor speed direction. eMIOS acts as a counter to get the
rotor absolute position. An angle tracking observer (ATO) is used to calculate the final rotor speed and
position. Emios_lcu, Lcu_Ip and Trgmux_Ip drivers are used to control and to configure peripherals for
this use case.

F3o position counter values g o
o9 23
< < =3
Phase A
Phase B ‘
Index one revolution ’—|
Figure 42. Output signals of the 1024 pulses Encoder
Pulses cw
rotation Absolute iti Rotor speed
ENC_PHA ENC_PHA CWS‘SOK;J: position
b . NN
E]T) eMios Absolute position|
S enc prs Trgmux | encpug| LCU  |[Pusescew | Trgmux Input ATO Rotor position
g & rotation Captu re >
A1} Absolute position
ccw side

Figure 43. Peripherals interconnection for quadrature encoder

Drivers +]
Adc_Sar_lp Bctu_lp Emios_lcu Emios_Mcl_lp
Emios_Pwm IntCtrl_Ip Leu_lp Lpspi
Lpuart_Uart osif_1 Siul2_Dio Siul2_leu
Siul2_Port Trgmux_Ip

Figure 44. Drivers for quadrature decoder feature

NOTE

This routine is disabled by default, since PM motor of the S32K344 motor
control kit is not equipped with encoder sensor. To enable encoder signal
processing routine, set ENCODER macro to true.

4.2.5.1. TRIGGER MUX

TRGMUX ensures a connection between Input pins and LCU and between eMIOS and LCU. Settings
within the “Hardware Group” ENCODER_PINS_TO_LCU connects PTA19(TRGMUX [IN13) and
PTA20(TRGMUX _IN14) to LCU1 inputs 0-1. Settings within the “Hardware Group”
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ENCODER_LCU_TO_EMIQOS connects LCU1 LCO outputs 2-3 to eMIOSO0 inputs of channels 5-6. The
setting is applied by calling Trgmux_Ip_Init() function.

Trigger MUX jprivers) = @
Name Trgmu Custom name [_]
Mode General Mode v
~ TRGMUX Preset Custom.. v

Name  ConfigTimeSupport General | Specific Configuration

MName | Trgmux Logic Group

+| [ X
0 Name ENCODER_LCU_TO_EMIOS
! Hardware Group TRGMUX_IP_EMIOSO_CHS_9 s
2
3 Hardware Lock O
4 ~ Trgmux Logic Trigger +| X

# Name Logic Trigger Name Hardware Output Hardware Input

{ 0 rg... TRGMUX_LOGIC_G.. TRGMUX_IP_OUTPUT_EMIOS0_CH5_9_IPP_IND_CH5 TRGMUX_IP_INPUT_LCU1_LCO_OUT 2

1 trg.. TRGMUX_LOGIC G.. TRGMUX_IP_OUTPUT_EMIOS0_CH5_9_IPP_IND_CH6 TRGMUX_IP_INPUT_LCU1_LCO_OUT_I3
< >
0 Name ENCODER_PINS_TO_LCU
! Hardware Group TRGMUX_IP_LCU1_O v
2
3 Hardware Lock |
4 ~ Trgmux Logic Trigger + X

# Name Logic Tngger Name Hardware Output Hardware Input

0 rg... TRGMUX_LOGIC_G.. TRGMUX_IP_OUTPUT_LCUT_O_INP_I0  TRGMUX_IP_INPUT_SIULZ_IN13

1 trg.. TRGMUX_LOGIC_G.. TRGMUX_IP_OUTPUT_LCUT_O_INP_IT  TRGMUX_IP_INPUT_SIUL2_IN14
< >

Figure 45. TRGMUX settings for quadrature decoder

In this example LCUL instance is selected for preprocessing encoder signals phase A and phase B. Same
LCU features are used as in chapter LCU but, whole preprocessing is realized in LCO. Configurations 3-
6 in “Lcu Logic Input” tab create a connection between LCU instance inputs and LC inputs. Multiplexor
inputs 0,1(pins PTA19,PTA20) are connected to LCO input 0,1 and multiplexor feedback input 0,1 (LCO
out 0,1) is connected to LCO input 2,3. Outputs configurations are in a tab “Lcu Logic Output”
configurations 6-9. True tables of outputs 0,1 just mirror inputs 0,1 and rising and falling edge is delayed
by digital filters. True tables of outputs 2,3 use information of all inputs. They detect edges of the
encoder phases PHA and PHB using auxiliary signals PHAO and PHBO as is depicted in waveform
Figure 46. Detected edge is represented by short pulse (in this example 5 ticks filters settings of outputs
0,1). Based on actual value of signals PHA and PHB, logic function in LUT distinguishes the direction
of rotation and a detected edge is placed on proper output (cw or ccw). True tables of all outputs (given
by LUT) can be found in Table 5. Filters of outputs 2 and 3 work as a glitch filters. If generated pulse is
shorter than 4 ticks it will not appear on the output. It is protection against a noise on ENC_PHA and
ENC_PHB pins. All settings are applied by calling Lcu_Ip_Init() function.
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LCUl
LCO
ENC_PHA
B 10 g
ENG PHE 1 Lt | risearal | output 00 [ ENC_PHAO J
-1 13 Blok Edge delay polarity i
gl
o1 T : ;
mm LUT || Risearal || output ENC_PHBO S —
) Blok Edge delay polarity z ‘ ‘
X ——
=) 5 I I I I
= LUT [ ,| Rise & Fall | output 02 PuI:es cw rotation _2.5,%
Blok Edge delay polarity il
. O3] Pulses ccw rotation
LUT | ] Rise & Fall 5] Output >
Blok Edge delay polarity
Figure 46. Simplified LCU features block diagram for quadrature decoder
v Lcu Preset | Custom.. v
Name | ConfigTimeSupport General | Logic Control Unit (LCU) Configuration
Preset | Custom.. v
Name Lcu Logic Instance | Lcu Logic Input | Lcu Logic Output
xX ~
0 Preset | Custom.. v
L Name ENCODER_SENSOR_PROCESSING
Logic Instance Name LCU_LOGIC_INSTANCE_1
LCU Hardware Instance LCU_IP_HW_INST_1 v
Operation Mode INTERRUPT v
Using Force Signal O
Using Sync Signal For Software Sync Mode [ ]
Figure 47. LCU instance configuration for quadrature decoder
Table 5. LUT configurations for LCU1 LCO
LCO I3 [LCO 12 [LCOI1L |LCO I0 LCO O0 [LCO O1 |LCO O2 |LCO O3
ENC PHBO | ENC PHAO | ENC PHB | ENC PHA ENC PHAO | ENC PHBO | Pulses cw Pulses ccw
0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 0 0 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0
1 0 1 0 0 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 0 1 1 0
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LCO_I3 LCO_I2 LCO_I1 | LCO_IO LCO_ OO0 |LCO O1 |LCO O2 |LCO O3
1 1 1 1 1 1 0 0
LUT OXAAAA 0xCCCC 0x4182 0x2814

Name | ConfigTimeSupport | General | Logic Control Unit (LCU) Configuration

Name | Lcu Logic Instance Leu Logic Input | Leu Logic Output Name |Lcu Logic Instance  Lcu Logic Input| Leu Logic Output

+([X[[A]||w

Name

Logic Input Name
Hardware Instance
Hardware Logic Cell

Hardware Input

o v AW oo

Mux Select
Using Software Override feature

[ ENCODER_PHA

[ Lu_LoGIC INPUT 3
LCU_IP_HW_INST_1
LCU_IP_HW_LC 0
LCU_IP_HW_INPUT_0
LCU_IP_MUX_SEL_LUIN_0

a
LCU_IP_SW_SYNC_IMMEDIATE
LCU_IP_SW_OVERRIDE_LOGIC_LOW

| [ K[ [A]]|w

0
1
2
3
4

Name

Logic Input Name

Hardware Instance

Hardware Logic Cell
Hardware Input

Mux Select

Using Software Override featus

| ENCODER_PHA_SHIFTED

[ Lcu_LoGIc_INPUT S
LCU_IP_HW_INST_1
LCU_IP_HW_LC_0
LCU_IP_HW_INPUT_2
LCU_IP_MUX_SEL_LU_OUT_0

re [
LCU_IP_SW_SYNC_IMMEDIATE
LCU_IP_SW_OVERRIDE_LOGIC_LOW

Figure 48. LCU inputs configuration for quadrature decoder

v v

Name ConfigTimeSupport General Logic Control Unit (LCU) Configuration

Name  Lcu Logic Instance Lcu Logic Input | Leu Logic Output

x A v

+

Name

Logic Output Name
Hardware Instance
Hardware Logic Cell
Hardware Output
Output LUT Control
LUT Rise Filter

O O N O\ W & W - O

LUT Fall Filter

LCU Interrupt Callback
Enable Debug Mode
Invert Output

LUT DMA Enable

LUT Interrupt Enable
Using Force Signal

[ ENCODER_PROCESSING_00
[ LcU_LoGIC_OUTPUT 6
LCU_IP_HW_INST_1
LCU_IP_HW_LC_0
LCU_IP_HW_OUTPUT_0

| OXAAAA

B

E
[ NULLPTR

O
O
tl
O

O

v v

Name ConfigTimeSupport General | Logic Control Unit (LCU) Configuration

Name Lcu Logic Instance 'Lcu Logic Input | Lcu Logic Output

+

W O N s W N - O

X ~ v

Name

Logic Output Name
Hardware Instance
Hardware Logic Cell
Hardware Output
Output LUT Control
LUT Rise Filter

LUT Fall Filter

LCU Interrupt Callback
Enable Debug Mode
Invert Output

LUT DMA Enable

LUT Interrupt Enable
Using Force Signal

Figure 49. LCU outputs for quadrature decoder

4.2.5.3.eMIOS

| ENCODER_PROCESSING_O2
| LCU_LOGIC_OUTPUT_8
LCU_IP_HW_INST_1
LCU_IP_HW_LC 0
LCU_IP_HW_OUTPUT_2

| 0x4182

l4

[4

[ NULLPTR

oOoOooo

eMIOSO0 channels 5 and 6 are channels of type G so they contain their own counter and are able to count
edges of the channel input signal. In the example, those channels operates in modulus counter buffered
(MCB) mode and count rising edges of signals coming from LCU which represents detected edges of
signals PHA and PHB of the encoder sensor. For more details about eMIOS channel types see S32K3xx
Reference Manual [7] . All settings are applied by calling Emios_Icu_Ip_Init() function and by enabling
edge counting using Emios_lcu_Ip_EnableEdgeCount() functions. Actual counter value is obtained by
calling lcu_GetEdgeNumbers() for particular channel.
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EMIOS Driver e i[s @
Name Emios_lcu Custom name I:
Mode EMIOS ICU Mode b
~ EMIOS_ICU Preset Custom... v

|Name ConfigTimeSupport s lcuConfig set|lcuGeneral

| MName [ IcuMaxChannel [ lcuChannels + lcueMios [ lcuHwinterruptConfigList

+|[x v

;

. Name | EMIOS_ENCODER_CW_POSITION |

EMIOS_ENCODES | -, channetia [o |
lcuChannelRef SEmios_lcu/Emios_lcu/eMiosConfigSet/lcueMios_0/lcueMios_0_Channel_0 v
IlcuDefaultStartEdge ICU_RISING_EDGE w
IcuMeasurementMode ICU_MODE_EDGE_COUNTER v

leuOverflowMotification |NULL_PTR

~

Figure 50. General ICU configuration

v EMIOS_ICU
|Name ConfigTimeSupport s IcuCom‘igSet. IcuGeneraI:

| MName [ lcuMaxChannel lcuChannels [a IcueMios. lcuHwinterruptConfigList

+ || x

 lcueMios_0

MName | lcueMios_0

eMios Hardware Module | 0

~'leueMiosChannels + x A
t lcueMios 0.Ch | Name | lcueMios_0_Channel _0

lcu Emios Freeze O
lcu Emios Prescaler EMIOS_PRESCALER_DIVIDEJ
lcuEmiosPrescaler_Alternate EMIOS_PRESCALER_DIVIDE_1
lcuEmiosDigitalFilter EMIOS_DIGITAL_FILTER_BYPASSED
lcuEmiosBusSelect EMIOS_ICU_BUS_INTERNAL_COUNTER
lcuSubModeforMeasurement SAIC

< > || IcuSignalMeasureWithoutinterrupt [

Figure 51. eMIOS channels for input capture

NOTE

Property IcuSubModeforMeasurement is not applicable for
ICU_MODE_EDGE_COUNTER. Channels are set into MCB mode by
calling Emios_Icu_lp_EnableEdgeCount function.

Example 9. eMIOS API for quadrature decoder

void main (void)

{

* eMios Driver
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Emios_Icu_Ip_Init(@U, &eMios_Icu_Ip_©_ Config_PB_BOARD_INITPERIPHERALS);
Emios_Icu_Ip_EnableEdgeCount(@u, 5U);
Emios_Icu_Ip_EnableEdgeCount(@u, 6U);

}
tBool POSPE_GetPospeElEnc (encoderPospe_t *ptr)
{
counterCW = (uint16_t) ((Icu_GetEdgeNumbers(IcuChannel_1))- ptr->counterCwOffset);
counterCCW = (uintl6_t) ((Icu_GetEdgeNumbers(IcuChannel 2))- ptr->counterCcwOffset);
}

NOTE

Various input pins or TRGMUX output can be selected for eMIOS input.
This selection is realized in SIUL2 IMCR register.

4.2.6. Communication

4.2.6.1. UART

LPUARTS is used as a communication interface between S32K344 MCU and FreeMASTER run-time
debugging and visualization tool. Lpuart_Uart RTD driver is used to configure LPUART. Configuration
is applied by calling Lpuart_Uart_Ip_Init(). LPUART must be configure before any API of
FreeMASTER embedded driver is called (functions: FMSTR_Init(), FMSTR_Poll(),
FMSTR_Recorder()).

For more about FreeMASTER see [4] .

Lpuart Uart Configuration privers; s @
Name iart_Uart Custom name []
Mode LPUART UART Mode ~

Preset  Custom.. v
Name  ConfigTimeSupport |GeneralConfiguration UartGlobalConfig
Preset | Custom.. v

Name UartGlobalConfig

~ UartChannel +

Uart6 Name Vart6
UartHwUsing LPUART_IP v
UartClockFunctionalGroupRef BOARD_BootClockRUN W

~ DetailModuleConfiguration

Name DetailModuleConfiguration

Uart hardware channel LPUART_6 v
Desire Baudrate LPUART_UART_BAUDRATE_115200 v
Uart Asynchronous Method LPUART_UART_IP_USING_INTERRUPTS ~
Uart Parity Type LPUART_UART_IP_PARITY_DISABLED v
Uart Stop Bit Number LPUART_UART_IP_ONE_STOP_BIT v
Uart Word Length LPUART_UART_IP_8 BITS_PER_CHAR v

Uart Internal Loopback Mode Enable  []

Figure 52. LPUART configuration
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4262 LPSPI

LPSPI1 is used as communication interface between S32K344 MCU and analog FET pre-driver
GD3000. NXP’s Three-Phase Brushless Motor Pre-Driver Software Driver (TPP) uses RTD LPSPI
driver to establish a communication and to configure GD3000 properly. Included embedded driver
provides access to all features of GD3000 FETSs driver such as writing/reading status registers, dead time
insertion and fault protection. SPI settings are applied by calling Lpspi_Ip_Init(). LPSPI must be
initialize before the TPP driver is used (Functions: GD3000 _Init(), TPP_GetStatusRegister(),

TPP_Clearlnterrupts()).

For more information about TPP driver see [11] .
LPSPi Conﬁguration [Drivers) Name | ConfigTimeSupport | SpiDriver | SpiGeneral

Name

MName SpiDriver
Mode  Lpspi Mode

~ SpiExternalDevice =
Name | ConfigTimeSupport | SpiDriver [SpiGeneral SpibxternalDevic  Name SpiExternalDevice_0
SpiBaudrate 100000
MName SpiGeneral SpiCsldentifier PCS0
SpiCsPolarity HIGH
SpiEnableDmaFastTransferSupport — SpiDataShiftEdge LEADING
SpiHalfDuplexModeSupport L] X
i — SpiHwUnit CSIBO
LpspilpDevErrorDetect L]
SpiGlobalDmaEnable ] SpisShiftClockldleLevel LOW
SpiTimeoutMethod OSIF_COUNTER_DUMMY SpiDataWidth 8
SpiTransmitTimeout 1 SpiDefaultData 0
SpiTransferStart M5B
v SpiPhyUnit - SpiTimeClk2Cs 0.0000001
SpiTimeCs2Clk 0.0000001
0 MName SpiPhyUnit_0
. SpiTimeCs2Cs 0.0000002
SpiPhyUnitMapping LPSPI_1
SpiPinConfiguration i)
SpiSamplePoint 0
Phn | lockF: I R I
SpiPhyUnitSelectClockFunctionalGroup BOARD_BootClockRUN . s SpiCsContinous TRUE

SpiPhyUnitMode SPI_MASTER

Figure 53. SPI configuration

4.3. Software architecture

4.3.1. Introduction

This section describes the software design of the Sensorless PMSM Field Oriented Control framework
application. The application overview and description of software implementation are provided. The aim
of this chapter is to help in understanding of the designed software.

4.3.2. Application data flow overview

The application software is interrupt driven running in real time. There is one periodic interrupt service
routine associated with the ADC conversion complete interrupt, executing all motor control tasks. This
includes both fast current and slow speed loop control. All tasks are performed in an order described by
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the application state machine shown in Figure 56, and application flowcharts shown in Figure 54 and

Figure 55.

All peripherals required by the

Software implementation on the S32K344

MAIN
application are reset and configured

Application peripherals
configuration

Initial state machine settings

|

state = init;
event = e_init;

Enable real time control

|

Start time bases;

Background tasks

&
«

\4

FreeMASTER polling
GD3000 monitoring
MCU temperature monitoring

Figure 54. Flow chart diagram of main function with background loop

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor
control calculations, the state machine functions are called within a periodic notification function.
Hence, in order to actually call state machine functions, the peripheral causing this periodic interrupt
must be properly configured and the interrupt enabled. As described in section S32K344 device
initialization all peripherals are initially configured and all interrupts are enabled after reset of the
device. As soon as all S32K344 peripherals are correctly configured, the state machine functions are
called from the BCTU notification function. The background loop handles non-critical timing tasks,
such as the FreeMASTER communication polling, GD3000 status pooling and microcontroller

temperature measurement.
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State variable acquisition

Fault detection routine

State machine calling

QBCTU notification functi@

Read HW user controls;

'

MEAS_GetUdcVoltage();
MEAS_Get3PhCurrent();

v

FaultDetection();

'

true
faultDetectionEvent

false

event = e_fault

<

StateTable[event][state]();
StateLED[state]();

v

FMSTR_Recorder();

Figure 55. Flow chart diagram of periodic interrupt notification function

4.3.3. State machine

The application state machine is implemented using a two-dimensional array of pointers to the functions
using variable called StateTable[][]. The first parameter describes the current application event, and the
second parameter describes the actual application state. These two parameters select a particular pointer
to state machine function, which invokes a function call whenever StateTable[][]() is called.
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Power on / hw. reset

/* Disable all external interrupts

Application peripherals
reset & configuration

/* Enable external interrupts

executed in ISR

e_init_done e_app_off

e_app_off e_fault_clear e_app_off

e_fault

e_fault

e_fault Q

e_calib_done

e_ready

e_app_on
e_align_done

e_fault

e_calib e_align

Figure 56. Application state machine

The application state machine consists of following six states, which are selected using variable state
defined as:

AppStates:
« INIT -state=0
o FAULT -state=1
. READY -state =2
« CALIB - state =3

o« ALIGN -state =4
« RUN -state=5
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To signalize/initiate a change of state, eleven events are defined, and are selected using variable event
defined as:

AppEvents:
. e fault-event=0
. e _fault clear-event=1
« e_init-event=2
« e_init_done - event =3
. e _ready-event=4
o €_app_on-event=5
. e calib-event=6
. e _calib_done-event=7
. e align-event=8
. e _align_done -event=9
« e run-event=10
. € _app_off -event=11

4.3.3.1.State — FAULT

e_fault
_
e_fault_clear

e_fault

Figure 57. FAULT state with transitions

The application goes immediately to this state when a fault is detected. The system allows all states to
pass into the FAULT state by setting cntrState.event = e_fault. State FAULT is a state that transitions
back to itself if the fault is still present in the system and the user does not request clearing of fault flags.
There are two different variables to signal fault occurrence in the application. The warning register
tempFaults represents the current state of the fault pin/variable to warn the user that the system is getting
close to its critical operation. And the fault register permFaults represents a fault flag, which is set and
put the application immediately to fault state. Even if fault source disappears, the fault remains set until
manually cleared by the user. Such mechanisms allow for stopping the application and analyzing the
cause of failure, even if the fault was caused by a short glitch on monitored pins/variables. State FAULT
can only be left when application variable switchFaultClear is manually set to true (using
FreeMASTER) or by simultaneously pressing the user buttons (SW5 and SW6) on the S32K344EVB
evaluation board. That is, the user has acknowledged that the fault source has been removed and the
application can be restarted. When the user sets switchFaultClear = true; the following sequence is
automatically executed, see Example 10.
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Example 10. Fault clearing sequence

void StateFault(void)
{

if (cntrState.usrControl.switchFaultClear)

{

// Clear permanent and temporary SW faults

permFaults.mcu.R = 0; // Clear mcu faults
permFaults.motor.R = 0; // Clear motor faults
permFaults.stateMachine.R = 0; // Clear state machine faults
gd3000Status.B.gd3000ClearErr = true; // Clear GD3000@ faults

// When all Faults cleared prepare for transition to next state.
cntrState.usrControl.readFault true;
cntrState.usrControl.switchFaultClear false;
cntrState.event e_fault_clear;

Setting event to cntrState.event = e_fault_clear while in FAULT state represents a new request to
proceed to INIT state. This request is purely user action and does not depend on actual fault status. In
other words, it is up to the user to decide when to set switchFaultClear true. However, according to the
interrupt data flow diagram shown in Figure 55, function faultDetection() is called before state machine
function state_table[event][state](). Therefore, all faults will be checked again and if there is any fault
condition remaining in the system, the respective bits in permFaults and tempFaults variables will be
set. As a consequence of permFaults not equal to zero, function faultDetection() will modify the
application event from e_fault_clear back to e_fault, which means jump to fault state when state
machine function state_table[event][state]() is called. Hence, INIT state will not be entered even though
the user tried to clear the fault flags using switchFaultClear. When the next state (INIT) is entered, all
fault bits are cleared, which means no fault is detected (permFaults = 0x0) and application variable
switchFaultClear is manually set to true.

The application is scanning for following system warnings and errors:
e DC bus over voltage
e DC bus under voltage
e DC bus over current
e Phase A and phase B over current

The thresholds for fault detection can be modified in INIT state. Please see [13] for further information
on how to set these thresholds using the MCAT. In addition to previous thresholds, fault state is entered
if following errors are detected:

e BCTU trigger faults

e GD3000 pre-driver errors (overtemperature, desaturation fault, low supply voltage, DC bus
overcurrent, phase error, framing error, write error after block, existing reset). See [10]

e FOC Error (irrelevant event call in state machine or e BEMF observer failure)
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4.3.3.2.State — INIT

e_init_done e_app_off

Figure 58. INIT state with transitions

State INIT is "one pass" state/function, and can be entered from all states except for READY state,
provided there are no faults detected. All application state variables are initialized in state INIT.

e_app_off e_init

4’?‘*

Initialization of application variables

(%e_init_done

Figure 59. Flow chart of state INIT

After the execution of INIT state, the application event is automatically set to
cntrState.event=e_init_done, and state READY is selected as the next state to enter.

4.3.3.3. State — READY

e_init_done

Figure 60. READY state with transitions

In READY state, application is waiting for user command to start the motor. The application is released
from waiting mode by pressing the on board button SW5 or SW6 or by FreeMASTER interface setting
the variable switchAppOnOff = true (see flow chart in Figure 61).
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event =e_ready, |
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[ P ]
>|<

3 State variable acquisition

MEAS_GetUdcVoltage();
MEAS_Get3phCurrent();

l Fault detection routine

faultDetection();

|

Figure 61. Flow chart of state READY

4.3.3.4.State — CALIB

@ = p_Off

. e_calib_done
e_calib

Figure 62. CALIB state with transitions

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all
PWM output are enabled. Calibration of the DC offset is achieved by generating 50% duty-cycle on the
PWM outputs, and taking several measurements of the ADCO and ADC1 channels connected to the
current sensors. These measurements are then averaged, and the average value for the channel is stored.
This value will be subtracted from the measured value when in normal operation. This way the half
range DC offset, caused by voltage shift of 2.5 V in conditional circuitry (see Figure 5), is removed in
the measured phase. State CALIB is a state that allows transition back to itself, provided no faults are
present, the user does not request stop of the application (by switchAppOnOff=true), and the calibration
process has not finished. The number of samples for averaging is set by macro
FILTER_SAMPLE_NO_MEAS where actual number of samples is

2( FILTER_SAMPLE_NO_MEAS+4) . After all samples have been taken and the averaged values
successfully saved, the application event is automatically set to cntrState.event=e_calib_done and state
machine can proceed to state ALIGN (see flow chart in Figure 63).
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calibCntr <= 0x0
false calibDone
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Figure 63. Flow chart of state CALIB

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is
performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling
edge of switchAppOnOff=false using FreeMASTER.

4.3.3.5.State — ALIGN

(e_calib_done

e_align

e_align_done

Figure 64. ALIGN state with transitions

This state manages alignment of the rotor and stator flux vectors to mark zero position. When using a
model based approach for position estimation, the zero position is not known. The zero position is
obtained at ALIGN state, where two state alignment is used to avoid sticking at 180deg. A DC voltage is
applied to g-axis voltage for a certain period and after that to d-axis voltage for the rest of the alignment
time. Ratio between d and q axis alignment time is given by macro ALIGN_D_FACTOR. This causes
the rotor to rotate to "align" position, where stator and rotor fluxes are aligned. The rotor position in
which the rotor stabilizes after applying this DC voltage is set as zero position. To get rotor stabilized at
aligned position, a certain time is selected for alignment process. This time and the amplitude of DC
voltage used for alignment can be modified by MCAT tool. Timing is implemented using a software
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counter that counts from a pre-defined value down to zero. During this time, the event remains set to
cntrState.event=e_align. When the counter reaches zero, the counter is reset back to the pre-defined

value, and event is automatically set to cntrState.event=e_align_done. This enables a transition to RUN
state see flow chart in Figure 65.
t e _calib_done

state = align;
event = e_align;

|

EnableOutput();

true

alignCntr > —
alignCntrinitValue*ALIGN_D_FACTOR

uDQReq.fltArgl = 0;

uDQReq.fltArgl = alignVoltage;
uDQReq.fltArg2 = alignVoltage; l

uDQReq.fltArg2 = 0;

thTransform.fltArgl = GFLIB_Sin(0);
thTransform.fltArg2 = GFLIB_Cos(0);

'

GMCLIB_Parkinv(&uAlBeReq,&thTransform,&uDQReq);

'

false
alignCntr<=0

ClearVariablesAfterAlign();
Set50%Duty();

event = e_align_done

A 4

svmSector = GMCLIB_SvmStd(&(pwmflt),&uAlBeReqDCB);
SetDutycycle();

:

Figure 65. Flow chart of state ALIGN

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is
performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling
edge of switchAppOnOff=false using FreeMASTER or simultaneously pressing SW5 and SW6.
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4.3.3.6. State — RUN

e_align_done

o

e_run
e_app_off

Figure 66. RUN state with transitions
In this state, the FOC algorithm is calculated, as described in section PMSM field oriented control.

The control is designed such that the drive might be operated in four position modes depending on the
source of the position information:

1. Force mode: The FOC control is based on the generated position (so called open loop position),
also this position is supplied to eBEMF observer in order to initialize its state.

2. Tracking mode: The FOC control is still using the open loop position, however, the eBEMF
observer is left on its own, meaning that the observer is using its own estimated position and speed
one calculation step delayed.

3. Sensorless mode: FOC control use estimated position and speed from eBEMF observer.

4. Encoder mode: FOC control uses position and speed obtained from Encoder sensor. This mode
is available only if ENCODER macro is set to true.

Position mode can be controlled by pos_mode variable in FreeMASTER interface. It might be modified
manually or automatically depending on the state of the variable cntrState.usrControl.controlMode. If
cntrState.usrControl.controlMode = automatic and switchSensor = Sensorless, application automatically
transits from Force mode (open loop mode) to Sensorless mode (closed loop mode) through Tracking
mode based on the actual rotor speed and speed limits defined for each position mode (see section Rotor
position/speed estimation). Variable switchSensor defines whether position/speed feedback comes from
eBEMF Observer or Encoder sensor. If switchSensor = Encoder, the application uses Encoder mode
only. The switchSensor is automatically set to Sensorless, if Encoder sensor is not present
(ENCODER=false).
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T e_align_done

state = run;
event= e_run;

|

CalcOpenLoop ();
CalcSensorless ();

|

ControlModeSelector (); _<

manual

controlMode

automatic

AutomaticMode ();

pos_mode

Control.thRotEl = OpenLoop.thRotEl ;
l case force: Control wRotEl = 0;

v

Force éBEMF with open loop speed

Force eBEMF with open loop position
speedLoopCntr >= false
SPEED_LOOP_C -
NTR CaClacKNTIEN| Control thRotEl = OpenLoop.thRotEl ;
g Control wRotEl = 0;

true

case sensorless:
»

>

Control thRotEl = pospeSensorless.thRotEl;

FocSlowLoop ()
Control.wRotEl = pospeSensorless wRotEl;

case encoder: | (ko - thROIEl;

Control.wRotE| = pospeEncoder wRotEl;

P

FocFastLoop () v

}

SetDutycycle();

%) e_app_off

Figure 67. Flow chart of state RUN

Calculation of fast current loop is executed every BCTU interrupt, while calculation of slow speed loop
is executed every Nth BCTU interrupt. Arbitration is done using a counter that counts from value N
down to zero. When zero is reached, the counter is reset back to N and slow speed loop calculation is
performed. N value (macro SPEED_LOOP_CNTR) is automatically calculated by MCAT form current
loop sample time and speed loop sample time parameters. This way, only one interrupt is needed for
both loops and timing of both loops is synchronized. Slow loop calculations are finished before entering
fast loop calculations (see flow chart in Figure 67).

Figure 68 shows implementation of FOC algorithm, used functions and variables. As can be seen from
the diagram, rotor position and speed are estimated by eBEMF observer. This is a default rotor position
and speed feedback for FOC. To run Encoder based FOC, ENCODER macro must be set to true and PM
motor provided with this motor control kit replaced by PM motor of the comparable power and equipped
with Encoder sensor. As mentioned previously, Encoder based FOC can be activated/deactivated by
setting switchSensor variable to encoder/sensorless.

A transition from RUN state to FAULT state is performed automatically when a fault occurs. A
transition to INIT state is performed by setting the event to cntrState.event=e_app_off, which is done
automatically on falling edge of switchAppOnOff=false using FreeMASTER or keeping user buttons
SW5 and SW6 pressed.

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Rev. 0, 11/2022

NXP Semiconductors 53



Software implementation on the S32K344

3-Phase Low-Voltage Power Stage

Real-Time Drivers U_Dc bus oJ.J [ JJ oJ.J
for S32K3 5
Vdc j } @
Hp-ALh
1

°L [
ﬁ Udc_bus
Y 7
Start/Stop Fault  overcurrent .Y GD3000 le_bus sa [sb [isc
FreeMASTER l protection l Enc_a Enc_b
| ! ty M .o
LPUART SIUL LPSPI eMIOS + LCU —» TRGMUX —» BCTU ADC TRGMUX
: |
RTD Driver RTD Driver RTD Driver RTD Driver ~ RTD Driver I:l)?.TD RTD Driver v
river ——————————————

Application Control gg’ gg:: 2 M

Duty Cycle ¢ 4 Us_alpha_comp RTD Driver

l
CeRbsiaRconp) Theta_enc
eta_est
Ny
:5:) Omega_est
Omega_actual_mech (,;)
ithS = ~_ Theta_enc_fit 4 4
S ' 2 :Omega_enc_filt
|
— Sensorless
— Encoder sensor

S32K344

Figure 68. Sensorless and Sensorbased FOC with FW implementation on S32K344

4.3.4. AMMCLIb Integration

Application software of the FOC Sensorless control with field weakening is built using NXP’s
Automotive Math and Motor Control Library set (AMMCLIib), a precompiled, highly speed-optimized
off-the-shelf software library designed for motor control applications. The most essential blocks of the
FOC structure are presented in Figure 68. AMMCL.ib supports all available data type implementations:
32-bit fixed-point, 16-bit fixed-point and single precision floating-point. In order to achieve high
performance of the S32K344 core, floating point arithmetic is used as a reference for this motor control
application.

Current Loop function AMCLIB_CurrentLoop unites and optimizes most inner loop of the FOC cascade
structure Figure 68. It consists of two PI controllers and basic mathematical operations which calculate
errors between required and feedback currents and limits for PI controllers based on the actual value of
the DC bus voltage. All functions and data structures are presented in Figure 69.
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Figure 69. Functions and data structures in AMCLIB_CurrentLoop

Required d- and g-axis stator currents can be either manually modified or generated by outer loop of the
cascade structure consisting of: Speed Loop and Field Weakening (FW) as shown in Figure 68. To
achieve highly optimized level, AMCLIB_FWSpeedLoop merges two functions of the AMMCLIB,
namely speed control loop AMCLIB_SpeedLoop and field weakening control AMCLIB_FW,

Figure 70. AMCLIB_SpeedLoop consists of speed PI controller GFLIB_ControllerPIpAW, speed ramp
GFLIB_Ramp placed in feedforward path and exponential moving average filter GFLIB_FilterMA
placed in the speed feedback. AMCLIB_FW function is NXP’s patented algorithm (US Patent No. US
2011/0050152 A1) that extends the speed range of PMSM beyond the base speed by reducing the stator
magnetic flux linkage as discussed in section Field weakening. All functions and data structures used in
AMCLIB_FW function are shown in Figure 70.
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Figure 70. Functions and data structures in AMCLIB_FWSpeedLoop

AMCLIB_FW key advantages:

Fully utilize the drive capabilities (speed range, load torque)

Reduces stator linkage flux only when necessary

Supports four quadrant operations

The algorithm is very robust - as a result, the PMSM behaves as a separately excited wound field
synchronous motor drive

e Allows maximum torque optimal control

*pCtrl->pUQReq

AMCLIB_FW
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eBEMF observer AMCLIB_BemfObsrv and Angle tracking observer AMCLIB_TrackObsrv constitute
important blocks in this application, Figure 68. They estimate rotor position and speed based on the
inputs, namely stator voltages u.p and currents i.g, Figure 71. AMCLIB_BemfObsrv transforms inputs
quantities from stationary reference frame o/p to quasi-synchronous reference frame y/6 that follows the
real synchronous rotor flux frame d/q with an error ferr. AMCLIB_BemfObsrv algorithm is based on the
mathematical model of the PMSM motor with excluded BEMF terms e,s. BEMF terms are estimated as
disturbances in this model, generated by PI controllers. The estimated BEMF values are used for
calculating the phase error &err, which is provided as an output of the BEMF observer.

To align both frames and provide accurate estimates, this phase error Ger must be driven to zero. This is
a main role of the Angle tracking observer AMCLIB_TrackObsrv which is attached to function of the
eBEMF observer AMCLIB_BemfObsrv, Figure 71. AMCLIB_TrackObsrv is an adopted phase-locked-
loop algorithm that estimates rotor speed and position keeping &err = 0. This is ensured by a loop
compensator that is P1 controller. While PI controller generates estimated rotor speed, integrator used in
this phase-locked-loop algorithm serves estimated rotor position.
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Figure 71. Structure of the AMCLIB_BemfObsrv and AMCLIB_TrackObsrv

More details related to AMMCLib FOC functions can be found in S32K34x AMMCL.ib User's Guide on
standard installation path

C:\NXP\AAMMCLIB\S32K3xx_ AMMCLIB_vX.Y.Z\doc\S32K3XXMCLUG.pdf. Parameters of the PI
controllers placed in the speed control loop, current control loop, eBEMF and Angle tracking observer
can be tuned by using NXP’s Motor Control Application Tuning tool (MCAT). Detailed instructions on
how to tune parameters of the FOC structure by MCAT are presented in [14] , [15] .

4.3.5. MCAT Integration

MCAT (Motor Control Application Tuning) is a graphical tool dedicated to motor control developers
and the operators of modern electrical drives. The main feature of proposed approach is automatic
calculation and real-time tuning of selected control structure parameters. Connecting and tuning new
electric drive setup becomes easier because the MCAT tool offers a possibility to split the control
structure and consequently to control the motor at various levels of cascade control structure.

The MCAT tool runs under FreeMASTER online monitor, which allows the real-time tuning of the
motor control application. Respecting the parameters of the controlled drive, the correct values of
control structure parameters are calculated, which can be directly updated to the application or stored in
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an application static configuration file. The electrical subsystems are modeled using physical laws and
parameters of the PI controllers are determined using Pole-placement method. FreeMASTER MCAT
control and tuning is described in the section FreeMASTER and MCAT user interface.

The MCAT tool generates a set of constants to the dedicated header file (for example “{Project
Location}\src\config\PMSM _appconfig.h”’). The names of the constants can be redefined within the
MCAT configuration file “Header file constant list.xml” (“{Project Location}\FreeMASTER_control\
MCAT\src\xml_files\”). The PMSM appconfig.h contains application scales, fault triggers, control
loops parameters, speed sensor and/or observer settings and FreeMASTER scales. The

PMSM _appconfig.h should be linked to the project and the constants should be used for the variables
initialization.

The FreeMASTER enables an online tuning of the control variables using MCAT control and tuning
view. However, the FreeMASTER must be aware of the used control-loop variables. A set of the names
is stored in “FM_params_list.xml” (“{Project Location}\FreeMASTER_contro\MCAT\src\xml_files\”).

5. FreeMASTER and MCAT user interface

The FreeMASTER debugging tool is used to control the application and monitor variables during run
time. Communication with the host PC passes via USB. However, because FreeMASTER supports
serial port communication, there must be a driver for the physical USB interface, OpenSDA, installed on
the host PC that creates a virtual COM port from the USB. The driver shall be installed automatically
plugging S32K344EVB to USB port. The application configures the LPUART module of the S32K344
for a communication speed of 115200bps. Therefore, the FreeMASTER user interface also needs to be
configured respectively.
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Motor Control Application Tuning tool

The MCAT is intended to be used as a tool for real-ime tuning and debugging of PMSM industrial applications. Parameters of the
Field Oriented Control structure are esfimated by MCAT based on the dynamic requirements and system parameters. Right Pl
controller parameters lead to desirable behavior of the motor quaniities. The static configuration of the funed system can be stored in
an external header file.

Connecting and tuning a new electric drive setup becomes easier with a Control Structure tab which offers the possibility fo split the
control structure and allows controlling the motor at different levels of cascade control structure.

MCAT 1.1.0

MName

emiconductors, v

Value
:
Speed Required 1900 [Fpm]
Made ) automatic EMNUM
Pasition Mode Variable Watch farce ENUM
Clear Faults panel -
State Ready
Event e_ready

R5232 UART Communication; COM3; speed=115200

3200

Figure 72. FreeMASTER and Motor Control Application Tunning Tool

5.1. MCAT Settings and Tuning

5.1.1. Application configuration and tuning

Unit Period

1000
1000

FreeMASTER and MCAT interface (Figure 72) enables online application tuning and control. The
MCAT tuning shall be used before the very first run of the drive to generate the configuration header file
(PMSM_appconfig.h). Most of the variables are accessible via MCAT online tuning (thus can be
updated anytime). They are highlighted when mouse pointer is over the button “Update Target” (see
Figure 73). Some parameters (especially the fault limit thresholds) must be set using the configuration

header file generation, which can be done on the “Output File” panel by clicking the “Generate
Configuration File” (see Figure 74).
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// Back-EMF constant = 0.005872 [V.sec/rad]
// Drive inertia = 0.12e-4 [kg.m2]
// Nominal current =6 [A]
// Nomina! speed = 4000 [rpm] v
f#define MOTOR PP (2.0F)

Figure 74. Output File panel and “Generate Configuration File” button

Parameters runtime update is done using the “Update Target” button (see Figure 75). Changes can be
also saved using “Store Data” button, or reloaded to previously saved configuration using “Reload Data”
button. Only stored configuration can be generated to PMSM_appconfig.h header file. File holding the
configuration is “{Project Location}\FreeMASTER_control\ MCAT\param_files\M1_params.txt”.
Settings for various motors, scenarios can be backed up and selected setting can be loaded by replacing
the content of M1_params.txt.
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Any change of parameters highlights the cells that have not been saved using “Store data”. Changes can
be reverted using “Reload Data” to previously saved configuration. This button is disabled if no change
has been made.

NOTE

MCAT tool can be configured using hidden mouse-over “Settings” button
(see Figure 72), where a set of advanced settings, for example Pl
controller types, speed sensors and other blocks of the control structure
can be changed. However, it is not recommended to change these settings
since it will force the MCAT to look for a different variables names and to
generate different set of constants than the application is designed for. See
MCAT tool documentation available at nxp.com.

The application tuning is provided by a set of MCAT pages dedicated to every part of the control
structure. An example of the Application Parameters Tuning page is in Figure 75. Following list of
settings pages is based on the PMSM sensorless application.

e Parameters Speed Loop
o Motor Parameters o Loop Parameters
o Hardware Scales o Speed PI Controller Constants
o SW Fault Triggers o Speed Ramp
o Application Scales o Speed Ramp Constants
o Alignment o Actual Speed Filter
e Current Loop o Speed PI Controller Limits
Loop Parameters Sensorless
o D axis Pl Controller o BEMF Observer Parameters
o Q axis PI Controller o BEMF DQ Observer Coefficients
o Current PI Controller Limits o Tracking Observer Pl Constants
o DC-bus voltage IIR filter settings o Tracking Observer Integrator
o Open Loop Start-up Parameters
o BEMF DQ Observer PI Controller

Constants

Changes can be tested using MCAT “Control Struc” page (Figure 76), where the following control
structures can be enabled:

Scalar Control
Voltage FOC (Position and Speed Feedback is enabled automatically)
Current FOC (Position and Speed Feedback is enabled automatically)
Speed FOC (Position and Speed Feedback is enabled automatically)
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Motor Control Application Tuning Tool

A

Motor 1: PMSM Tuning Mode:  Expert vj
-
Input Application Parameters
= ey ——————————— —— N R TINR —— —_ —

pp 2 H U DCB trip 7. M
Rs 0192 {0} U DCB under e M
Ld 0.000096 [H] U DCB over 18 M
Lq 0.000107  [H] | ph over 7 A
ke 0.005872 [V .secirad] Temp over 110 [*C}
J 0.12¢-4 [kgm2}

Iph nom 6 1Al Application Scales

Uph nom 7M™ Kt 0.010614 [NmJA]
N nom 4000 [rpm) N max 5500 (rpm]
Hardware Scales Alignment

1 max 3120 (A Align voltage 05 M
U DCB max 45 Vi Align duration 1 [sec)
Temp max 6452 [°C]

Update Target l } Reload Data Store Data

Figure 75. MCAT input application parameters page

Motor Control Application Tuning Tool

Motor 1: PMSM Tuning Mode: Expert | v|

Introduction Current Loop | Speed Loop Sensorless WeLLIGIBSGIE  Output File App Control -

Application Control Structure

—— State Control — Ci de Control Strnu Composition
Vi factor 118 %!
ON Scalar Control < c i L o
R
| view Speedreq | 0O [rpm]
Voltage FOC < — Ud_req 0 ™M
| === -
v s 0
OFF view q_req
Current FOC « = Id 0 A
Application State = A
view LS la_req I—" [A]
RUN Speed FOC . -
view ‘ i Speed_Ieq 1000 [rpm]
P“::;';“ & S:eed !‘ ENABLED g::“e':" = [sensorless| v

NXP Semiconductors, Mator Control Solutio

Figure 76. MCAT application control structure page

3-phase Sensorless PMSM Motor Control Kit with S32K344 using RTD Low Level API, Application Notes, Rev. 0,
11/2022




FreeMASTER and MCAT user interface

5.2. MCAT application Control

All application state machine variables can be seen on the FreeMASTER MCAT App control page as
shown in Figure 77. Warnings and faults are signaled by a highlighted red color bar with name of the
fault source. The warnings are signaled by a round LED-like indicator, which is placed next to the bar
with the name of the fault source. The status of any fault is signaled by highlighting respective
indicators. In Figure 77, for example, there is pending fault flag and one warning indicated ("Udcb LO"
- DC bus voltage is close to its under voltage conditions). That means that the measured voltage on the
DC bus exceeds the limit set in the MCAT _Init function. The warning indicator is still on if the voltage
is higher than the warning limit set in INIT state. In this case, the application state FAULT is selected,
which is shown by a frame indicator hovering above FAULT state. After all actual fault sources have
been removed, no warning indicators are highlighted, but the fault indicators will remain highlighted.
The pending faults can now be cleared by pressing the "FAULT" button. This will clear all pending
faults and will enable transition of the state machine into INIT and then READY state. After the
application faults have been cleared and the application is in READY state, all variables should be set to
their default values. The application can be started by application On/Off switch. Successful selection is
indicated by highlighting the On/Off button in green. Required speed can be set by clicking on speed
gauge or by modifying FreeMASTER variable ” Speed Required”.

“r
A

Motor Control Application Tuning Tool

Motor 1. PMSM Tuning Mode: Expert | v |

DC Bus Voltage
PMSM Control Page measurement

Warnings
status

Application Faults

. e ETTm ¢
e e
e WACE °

15 20 25 3p
10 35 40

\*\\\\\\\‘\N 5
‘)C Bus voltage

Mechanical speed

0 indicator
° ° e 2000 ‘““{1,,,,,‘,““”&000
\
3000 & /r, 3000
Faults status

LT  Default  Sensor Optior s Z 4000

Settings = =
.s.uucrﬂ—i speed ‘:souo

[rpm]

OFF FAULT LOAD Sensorles vV 600 s 000

Application ON/OFF State info and
switch Clear faults button

Figure 77. FreeMASTER MCAT Control Page for controlling the application
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6. Conclusion

Design, described in this application note shows the simplicity and efficiency in using the S32K344
microcontroller for Sensorless PMSM motor control and introduces it as an appropriate candidate for
various applications in the automotive area. MCAT tool provides interactive online tool which makes
the PMSM drive application tuning friendly and intuitive.
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